Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Physiol Rep ; 11(19): e15829, 2023 10.
Article in English | MEDLINE | ID: mdl-37771106

ABSTRACT

The JAK/STAT pathway plays a crucial role in the pathogenesis of rheumatoid arthritis (RA) and JAK inhibitors have emerged as a new group of effective drugs for RA treatment. Recently, high STAT3 levels have been associated with the upregulation of the scaffold protein NEDD9, which is a regulator of T-cell trafficking and promotes collagen-induced arthritis (CIA). In this study, we aimed to reveal how treatment with JAK inhibitors affects NEDD9 in CD4+ T cells from RA patients. We analyzed NEDD9 expression in CD4+ T cells from 50 patients treated with either baricitinib, tofacitinib, or upadacitinib and performed cell migration assays to assess the potential influence of JAK inhibitor treatment on CD4+ T-cell migration. We observed that treatment with baricitinib and upadacitinib is associated with reduced NEDD9 expression in CD4+ T cells. In contrast, NEDD9 levels were not altered during treatment with tofacitinib. Moreover, treatment with baricitinib was associated with a significantly reduced migratory capacity of effector CD4+ T cells but not with impaired migration of Treg cells. This study reveals previously unknown associations between JAK inhibitor treatment and NEDD9 expression and indicates that JAK inhibitors could reduce effector T-cell migration.


Subject(s)
Arthritis, Rheumatoid , Janus Kinase Inhibitors , Humans , Janus Kinase Inhibitors/pharmacology , Janus Kinase Inhibitors/therapeutic use , Janus Kinases , CD4-Positive T-Lymphocytes/pathology , Signal Transduction , STAT Transcription Factors , Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/pathology , Adaptor Proteins, Signal Transducing
2.
Lupus Sci Med ; 9(1)2022 08.
Article in English | MEDLINE | ID: mdl-35940821

ABSTRACT

OBJECTIVE: SLE is an autoimmune disease with a complex pathogenesis. T-cell infiltration into organs contributes to inflammation and organ damage in SLE. Recently, G-protein signalling modulator 2 (GPSM2) has been shown to be implicated in T-cell migration. METHODS: We analysed the expression levels of GPSM2 and of a truncated isoform of GPSM2 containing the GoLoco motif region in CD4+ T cells from patients with SLE and from healthy individuals by western blot. In a next step, we studied the role of the truncated GPSM2 isoform using a CD4+ T-cell migration assay. RESULTS: Our experiments revealed comparable levels of GPSM2 in CD4+ T cells from patients with SLE and healthy controls. In contrast, the truncated 35 kDa isoform of GPSM2 was significantly more highly expressed in CD4+ T cells from patients with SLE as compared with healthy subjects. Antibody-mediated blockade of the 35 kDa GPSM2 isoform reduced the in vitro capacity of CD4+ T cells to migrate towards the chemokine CCL20. CONCLUSIONS: A truncated GPSM2 isoform containing the GoLoco motif region is upregulated in CD4+ T cells from patients with SLE and promotes CD4+ T-cell migration. Targeting this isoform with specific antibodies might be a promising approach to reduce CD4+ T-cell infiltration into inflamed tissues and to prevent organ damage in SLE.


Subject(s)
Lupus Erythematosus, Systemic , CD4-Positive T-Lymphocytes/metabolism , Cell Movement , Humans , Intracellular Signaling Peptides and Proteins/metabolism , Protein Isoforms/metabolism , T-Lymphocytes
3.
Cells ; 11(14)2022 07 11.
Article in English | MEDLINE | ID: mdl-35883614

ABSTRACT

Regulatory T (Treg) cells play an important role in immune tolerance and contribute to the prevention of autoimmune diseases, including rheumatoid arthritis (RA). The differentiation, function and stability of Treg cells is controlled by members of the Ikaros zinc finger transcription factor family. In this study, we aimed to reveal how the expression of Ikaros transcription factors is affected by disease activity in RA. Therefore, we analyzed the ex vivo expression of Ikaros, Helios, Aiolos and Eos in Treg cells, Th17 cells and Th1 cells from RA patients by flow cytometry. We found significantly reduced expression of Helios, Aiolos and Eos in Treg cells from RA patients as compared to healthy controls. Moreover, Helios and Aiolos levels correlated with disease activity, as assessed by DAS28-CRP. In addition, Ikaros, Helios and Aiolos were significantly downregulated in Th1 cells from RA patients, while no difference between healthy individuals and RA was observed in Th17 cells. In summary, Helios and Aiolos expression in Treg cells correlates with disease activity and the expression levels of Ikaros transcription factors are diminished in Treg cells from RA patients. This observation could explain the reduced stability of Treg cells in RA.


Subject(s)
Arthritis, Rheumatoid , Ikaros Transcription Factor , Humans , Ikaros Transcription Factor/genetics , Ikaros Transcription Factor/metabolism , T-Lymphocytes, Regulatory , Th17 Cells/metabolism , Zinc Fingers
4.
Clin Immunol ; 238: 109025, 2022 05.
Article in English | MEDLINE | ID: mdl-35487454

ABSTRACT

BACKGROUND: The cell surface molecule CD6 is a modulator of T cell receptor (TCR) signaling. Recently, it has been reported that CD6 is downregulated on CD4+ T cells following T cell activation. This mechanism could limit the efficacy of anti-CD6 therapeutical antibodies. METHODS: We analyzed CD6 expression on activated and non-activated Th1 cells and Th17 cells by flow cytometry. RESULTS: Our experiments confirmed a significant downregulation of CD6 on IFNγ- and IL17-negative CD4+ T cells from healthy individuals and from patients with rheumatoid arthritis following T cell activation with anti-CD3 and anti-CD28 antibodies. In contrast, CD6 expression remained stable on activated Th17 cells and Th1 cells. CONCLUSIONS: Th1 and Th17 cells are resistant towards T cell activation-induced downregulation of CD6. These findings are relevant for the future development of CD6 targeting therapies and show that CD6 expression is differentially regulated in CD4+ T cell subsets.


Subject(s)
Antigens, CD , Antigens, Differentiation, T-Lymphocyte , Down-Regulation , Lymphocyte Activation , Th1 Cells , Th17 Cells , CD28 Antigens/metabolism , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...