Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 12(1): 2806, 2022 02 18.
Article in English | MEDLINE | ID: mdl-35181678

ABSTRACT

Saliva is an attractive sample for coronavirus disease 2019 testing due its ease of collection and amenability to detect viral RNA with minimal processing. Using a direct-to-RT-PCR method with saliva self-collected from confirmed COVID-19 positive volunteers, we observed 32% false negative results. Confirmed negative and healthy volunteer samples spiked with 106 genome copies/mL of heat-inactivated severe acute respiratory syndrome coronavirus 2 showed false negative results of 10% and 13%, respectively. Additional sample heating or dilution of the false negative samples conferred only modest improvements. These results highlight the potential to significantly underdiagnose COVID-19 infections when testing directly from minimally processed heterogeneous saliva samples.


Subject(s)
COVID-19 Nucleic Acid Testing , SARS-CoV-2/isolation & purification , Saliva/virology , False Negative Reactions , Healthy Volunteers , Humans , Point-of-Care Testing
2.
Angew Chem Int Ed Engl ; 60(45): 24266-24274, 2021 11 02.
Article in English | MEDLINE | ID: mdl-34464491

ABSTRACT

We report a simple and rapid saliva-based SARS-CoV-2 antigen test that utilizes a newly developed dimeric DNA aptamer, denoted as DSA1N5, that specifically recognizes the spike proteins of the wildtype virus and its Alpha and Delta variants with dissociation constants of 120, 290 and 480 pM, respectively, and binds pseudotyped lentiviruses expressing the wildtype and alpha trimeric spike proteins with affinity constants of 2.1 pM and 2.3 pM, respectively. To develop a highly sensitive test, DSA1N5 was immobilized onto gold electrodes to produce an electrochemical impedance sensor, which was capable of detecting 1000 viral particles per mL in 1:1 diluted saliva in under 10 min without any further sample processing. Evaluation of 36 positive and 37 negative patient saliva samples produced a clinical sensitivity of 80.5 % and specificity of 100 % and the sensor could detect the wildtype virus as well as the Alpha and Delta variants in the patient samples, which is the first reported rapid test that can detect any emerging variant of SARS-CoV-2.


Subject(s)
Antigens, Viral/analysis , Aptamers, Nucleotide/chemistry , Biosensing Techniques , COVID-19 Serological Testing , Electrochemical Techniques , SARS-CoV-2/genetics , Humans , Saliva/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...