Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
Add more filters










Publication year range
1.
Proc Natl Acad Sci U S A ; 120(28): e2305595120, 2023 Jul 11.
Article in English | MEDLINE | ID: mdl-37399407

ABSTRACT

Inertia-less viscoelastic channel flow displays a supercritical nonnormal mode elastic instability due to finite-size perturbations despite its linear stability. The nonnormal mode instability is determined mainly by a direct transition from laminar to chaotic flow, in contrast to normal mode bifurcation leading to a single fastest-growing mode. At higher velocities, transitions to elastic turbulence and further drag reduction flow regimes occur accompanied by elastic waves in three flow regimes. Here, we demonstrate experimentally that the elastic waves play a key role in amplifying wall-normal vorticity fluctuations by pumping energy, withdrawn from the mean flow, into wall-normal fluctuating vortices. Indeed, the flow resistance and rotational part of the wall-normal vorticity fluctuations depend linearly on the elastic wave energy in three chaotic flow regimes. The higher (lower) the elastic wave intensity, the larger (smaller) the flow resistance and rotational vorticity fluctuations. This mechanism was suggested earlier to explain elastically driven Kelvin-Helmholtz-like instability in viscoelastic channel flow. The suggested physical mechanism of vorticity amplification by the elastic waves above the elastic instability onset recalls the Landau damping in magnetized relativistic plasma. The latter occurs due to the resonant interaction of electromagnetic waves with fast electrons in the relativistic plasma when the electron velocity approaches light speed. Moreover, the suggested mechanism could be generally relevant to flows exhibiting both transverse waves and vortices, such as Alfven waves interacting with vortices in turbulent magnetized plasma, and Tollmien-Schlichting waves amplifying vorticity in both Newtonian and elasto-inertial fluids in shear flows.

2.
Sci Rep ; 13(1): 1064, 2023 Jan 19.
Article in English | MEDLINE | ID: mdl-36658217

ABSTRACT

An addition of long-chain, flexible polymers strongly affects laminar and turbulent Newtonian flows. In laminar inertia-less viscoelastic channel flow, the supercritical elastic instability of non-normal eigenmodes of non-Hermitian equations at finite-size perturbations leads to chaotic flow. Then three chaotic flow regimes: transition, elastic turbulence (ET), and drag reduction (DR), accompanied by elastic waves, are observed and characterized. Here we show that independently of external perturbation strength and structure, chaotic flows above the instability onset in transition, ET, and DR flow regimes reveal similar scaling of flow properties, universal scaling of elastic wave speed with Weissenberg number, Wi, defined the degree of polymer stretching, and the coherent structure of velocity fluctuations, self-organized into cycling self-sustained process, synchronized by elastic waves. These properties persist over the entire channel length above the instability threshold. It means that only an absolute instability exists in inertia-less viscoelastic channel flow, whereas a convective instability, is absent. This unexpected discovery is in sharp contrast with Newtonian flows, where both convective and absolute instabilities are always present in open flows. It occurs due to differences in nonlinear terms in an elastic stress equation, where except for the advective term, two key terms describing polymer stretching along the channel length are present.

3.
Proc Natl Acad Sci U S A ; 118(34)2021 08 24.
Article in English | MEDLINE | ID: mdl-34408022

ABSTRACT

Originally, Kelvin-Helmholtz instability (KHI) describes the growth of perturbations at the interface separating counterpropagating streams of Newtonian fluids of different densities with heavier fluid at the bottom. Generalized KHI is also used to describe instability of free shear layers with continuous variations of velocity and density. KHI is one of the most studied shear flow instabilities. It is widespread in nature in laminar as well as turbulent flows and acts on different spatial scales from galactic down to Saturn's bands, oceanographic and meteorological flows, and down to laboratory and industrial scales. Here, we report the observation of elastically driven KH-like instability in straight viscoelastic channel flow, observed in elastic turbulence (ET). The present findings contradict the established opinion that interface perturbations are stable at negligible inertia. The flow reveals weakly unstable coherent structures (CSs) of velocity fluctuations, namely, streaks self-organized into a self-sustained cycling process of CSs, which is synchronized by accompanied elastic waves. During each cycle in ET, counter propagating streaks are destroyed by the elastic KH-like instability. Its dynamics remarkably recall Newtonian KHI, but despite the similarity, the instability mechanism is distinctly different. Velocity difference across the perturbed streak interface destabilizes the flow, and curvature at interface perturbation generates stabilizing hoop stress. The latter is the main stabilizing factor overcoming the destabilization by velocity difference. The suggested destabilizing mechanism is the interaction of elastic waves with wall-normal vorticity leading to interface perturbation amplification. Elastic wave energy is drawn from the main flow and pumped into wall-normal vorticity growth, which destroys the streaks.

4.
Phys Rev Lett ; 123(23): 234501, 2019 Dec 06.
Article in English | MEDLINE | ID: mdl-31868477

ABSTRACT

We report the scaling relations between the exponents of the power-law decays of kinetic and elastic energies, pressure, as well as torque fluctuations in elastic turbulence (ET). The relations are derived by estimating that the divergent part of the elastic stress is much larger than its vortical part, and its contribution into the full elastic stress is dominant in the range of the power spectrum amplitudes observed experimentally in ET. The estimate is in line with polymer stretching by flow: the polymers are stretched mostly by the divergent part associated with a strain rate, whereas a rotational, or vortical, flow plays a minor role in the polymer stretching. The scaling relations agree well with the exponent values obtained experimentally and numerically in the ET regime of a viscoelastic fluid in different flow geometries.

5.
Nat Commun ; 10(1): 937, 2019 02 26.
Article in English | MEDLINE | ID: mdl-30808870

ABSTRACT

Electron transport in two-dimensional conducting materials such as graphene, with dominant electron-electron interaction, exhibits unusual vortex flow that leads to a nonlocal current-field relation (negative resistance), distinct from the classical Ohm's law. The transport behavior of these materials is best described by low Reynolds number hydrodynamics, where the constitutive pressure-speed relation is Stoke's law. Here we report evidence of such vortices observed in a viscous flow of Newtonian fluid in a microfluidic device consisting of a rectangular cavity-analogous to the electronic system. We extend our experimental observations to elliptic cavities of different eccentricities, and validate them by numerically solving bi-harmonic equation obtained for the viscous flow with no-slip boundary conditions. We verify the existence of a  predicted threshold at which vortices appear. Strikingly, we find that a two-dimensional theoretical model captures the essential features of three-dimensional Stokes flow in experiments.

6.
Nat Commun ; 10(1): 652, 2019 02 08.
Article in English | MEDLINE | ID: mdl-30737403

ABSTRACT

Speed of sound waves in gases and liquids are governed by the compressibility of the medium. There exists another type of non-dispersive wave where the wave speed depends on stress instead of elasticity of the medium. A well-known example is the Alfven wave, which propagates through plasma permeated by a magnetic field with the speed determined by magnetic tension. An elastic analogue of Alfven waves has been predicted in a flow of dilute polymer solution where the elastic stress of the stretching polymers determines the elastic wave speed. Here we present quantitative evidence of elastic Alfven waves in elastic turbulence of a viscoelastic creeping flow between two obstacles in channel flow. The key finding in the experimental proof is a nonlinear dependence of the elastic wave speed cel on the Weissenberg number Wi, which deviates from predictions based on a model of linear polymer elasticity.

7.
Nat Commun ; 8(1): 468, 2017 09 07.
Article in English | MEDLINE | ID: mdl-28883492

ABSTRACT

Chaotic flows drive mixing and efficient transport in fluids, as well as the associated beautiful complex patterns familiar to us from our every day life experience. Generating such flows at small scales where viscosity takes over is highly challenging from both the theoretical and engineering perspectives. This can be overcome by introducing a minuscule amount of long flexible polymers, resulting in a chaotic flow dubbed 'elastic turbulence'. At the basis of the theoretical frameworks for its study lie the assumptions of a spatially smooth and random-in-time velocity field. Previous measurements of elastic turbulence have been limited to two-dimensions. Using a novel three-dimensional particle tracking method, we conduct a microfluidic experiment, allowing us to explore elastic turbulence from the perspective of particles moving with the flow. Our findings show that the smoothness assumption breaks already at scales smaller than a tenth of the system size. Moreover, we provide conclusive experimental evidence that 'ballistic' separation prevails in the dynamics of pairs of tracers over long times and distances, exhibiting a memory of the initial separation velocities. The ballistic dispersion is universal, yet it has been overlooked so far in the context of small scales chaotic flows.Elastic turbulence, a random-in-time flow, can drive efficient mixing in microfluidics. Using a 3D particle tracking method, the authors show that the smoothness assumption breaks at scales far smaller than believed and the ballistic pair dispersion holds over much longer distances than expected.

8.
Soft Matter ; 12(7): 2186-91, 2016 Feb 21.
Article in English | MEDLINE | ID: mdl-26758020

ABSTRACT

Dilute polymer solutions are known to exhibit purely elastic instabilities even when the fluid inertia is negligible. Here we report the quantitative evidence of two consecutive oscillatory elastic instabilities in an elongation flow of a dilute polymer solution as realized in a T-junction geometry with a long recirculating cavity. The main result reported here is the observation and characterization of the first transition as a forward Hopf bifurcation resulted in a uniformly oscillating state due to breaking of time translational invariance. This unexpected finding is in contrast with previous experiments and numerical simulations performed in similar ranges of the Wi and Re numbers, where the forward fork-bifurcation into a steady asymmetric flow due to the broken spatial inversion symmetry was reported. We discuss the plausible discrepancy between our findings and previous studies that could be attributed to the long recirculating cavity, where the length of the recirculating cavity plays a crucial role in the breaking of time translational invariance instead of the spatial inversion. The second transition is manifested via time aperiodic transverse fluctuations of the interface between the dyed and undyed fluid streams at the channel junction and advected downstream by the mean flow. Both instabilities are characterized by fluid discharge-rate and simultaneous imaging of the interface between the dyed and undyed fluid streams in the outflow channel.

9.
Phys Rev E ; 94(6-1): 062412, 2016 Dec.
Article in English | MEDLINE | ID: mdl-28085369

ABSTRACT

In this paper we investigate the in vitro dynamics of a single rabbit red blood cell (RBC) in a planar linear flow as a function of a shear stress σ and the dynamic viscosity of outer fluid η_{o}. A linear flow is a generalization of previous studies dynamics of soft objects including RBC in shear flow and is realized in the experiment in a microfluidic four-roll mill device. We verify that the RBC stable orientation dynamics is found in the experiment being the in-shear-plane orientation and the RBC dynamics is characterized by observed three RBC dynamical states, namely tumbling (TU), intermediate (INT), and swinging (SW) [or tank-treading (TT)] on a single RBC. The main results of these studies are the following. (i) We completely characterize the RBC dynamical states and reconstruct their phase diagram in the case of the RBC in-shear-plane orientation in a planar linear flow and find it in a good agreement with that obtained in early experiments in a shear flow for human RBCs. (ii) The value of the critical shear stress σ_{c} of the TU-TT(SW) transition surprisingly coincides with that found in early experiments in spite of a significant difference in the degree of RBC shape deformations in both the SW and INT states. (iii) We describe the INT regime, which is stationary, characterized by strong RBC shape deformations and observed in a wide range of the shear stresses. We argue that our observations cast doubts on the main claim of the recent numerical simulations that the only RBC spheroidal stress-free shape is capable to explain the early experimental data. Finally, we suggest that the amplitude dependence of both θ and the shape deformation parameter D on σ can be used as the quantitative criterion to determine the RBC stress-free shape.


Subject(s)
Erythrocytes/physiology , Models, Biological , Animals , Biomechanical Phenomena , Cell Shape/physiology , Computer Simulation , Erythrocyte Membrane , Humans , Rabbits , Viscosity
10.
Article in English | MEDLINE | ID: mdl-26382497

ABSTRACT

We report unexpected results of a drastic difference in the transition to fully developed turbulent and turbulent drag reduction (TDR) regimes and in their properties in a von Karman swirling flow with counter-rotating disks of water-based polymer solutions for viscous (by smooth disks) as well as inertial (by bladed disks) forcing and by tracking just torque Γ(t) and pressure p(t) . For the viscous forcing, just a single TDR regime is found with the transition values of the Reynolds number (Re) Re turb c =Re TDR c ≃(4.8±0.2)×10(5) independent of ϕ , whereas for the inertial forcing two turbulent regimes are revealed. The first transition is to fully developed turbulence, and the second one is to the TDR regime with both Re turb c and Re TDR c depending on polymer concentration ϕ . Both regimes differ by the values of C f and C p , by the scaling exponents of the fundamental turbulent characteristics, by the nonmonotonic dependencies of skewness and flatness of the pressure PDFs on Re, and by the different frequency power spectra of p with the different dependencies of the main vortex peak frequency in the p power spectra on ϕ and Re. Thus our experimental results show the transition to the TDR regime in a von Karman swirling flow for the viscous and inertial forcings in a sharp contrast to the recent experiments [Phys. Fluids 10, 426 (1998); Phys. Rev. E 47, R28(R) (1993); and J. Phys.: Condens. Matter 17, S1195 (2005)] where the transition to TDR is observed in the same swirling flow with counter-rotating disks only for the viscous forcing. The latter result has led its authors to the wrong conclusion that TDR is a solely boundary effect contrary to the inertial forcing associated with the bulk effect, and this conception is currently rather widely accepted in literature.

11.
Phys Rev Lett ; 112(13): 138106, 2014 Apr 04.
Article in English | MEDLINE | ID: mdl-24745463

ABSTRACT

We report first experimental observations of dynamics of compound vesicles in linear flow realized in a microfluidic four-roll mill. We show that while a compound vesicle undergoes the same main tank-treading, trembling (TR), and tumbling regimes, its dynamics are far richer and more complex than that of unilamellar vesicles. A new swinging motion of the inner vesicle is found in TR in accord with simulations. The inner and outer vesicles can exist simultaneously in different dynamical regimes and can undergo either synchronized or unsynchronized motions depending on the filling factor. A compound vesicle can be used as a physical model to study white blood cell dynamics in flow similar to a unilamellar vesicle used successfully to model anucleate cells.


Subject(s)
Leukocytes/chemistry , Leukocytes/cytology , Models, Biological , Models, Chemical , Unilamellar Liposomes/chemistry , Micelles , Microfluidic Analytical Techniques/instrumentation , Microfluidic Analytical Techniques/methods
12.
Adv Colloid Interface Sci ; 208: 129-41, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24630339

ABSTRACT

We review the dynamical behavior of giant fluid vesicles in various types of external hydrodynamic flow. The interplay between stresses arising from membrane elasticity, hydrodynamic flows, and the ever present thermal fluctuations leads to a rich phenomenology. In linear flows with both rotational and elongational components, the properties of the tank-treading and tumbling motions are now well described by theoretical and numerical models. At the transition between these two regimes, strong shape deformations and amplification of thermal fluctuations generate a new regime called trembling. In this regime, the vesicle orientation oscillates quasi-periodically around the flow direction while asymmetric deformations occur. For strong enough flows, small-wavelength deformations like wrinkles are observed, similar to what happens in a suddenly reversed elongational flow. In steady elongational flow, vesicles with large excess areas deform into dumbbells at large flow rates and pearling occurs for even stronger flows. In capillary flows with parabolic flow profile, single vesicles migrate towards the center of the channel, where they adopt symmetric shapes, for two reasons. First, walls exert a hydrodynamic lift force which pushes them away. Second, shear stresses are minimal at the tip of the flow. However, symmetry is broken for vesicles with large excess areas, which flow off-center and deform asymmetrically. In suspensions, hydrodynamic interactions between vesicles add up to these two effects, making it challenging to deduce rheological properties from the dynamics of individual vesicles. Further investigations of vesicles and similar objects and their suspensions in steady or time-dependent flow will shed light on phenomena such as blood flow.

13.
Phys Rev E Stat Nonlin Soft Matter Phys ; 86(5 Pt 2): 056320, 2012 Nov.
Article in English | MEDLINE | ID: mdl-23214888

ABSTRACT

A polymer solution partially filling a rotating horizontal drum undergoes an elastically driven instability at low Reynolds numbers. This instability manifests itself through localized plumelike bursts, perturbing the free liquid surface. Here we present an expanded experimental account regarding the dynamics of individual plumes and the statistics pertaining to the complex collective interaction between plumes, which leads to plume coagulation. We also present a detailed description of an optical technique that enables the visualization and measurement of surface perturbations in coating flows within a rotating horizontal drum.


Subject(s)
Models, Chemical , Nonlinear Dynamics , Rheology/methods , Solutions/chemistry , Computer Simulation , Elastic Modulus , Wettability
14.
Phys Rev E Stat Nonlin Soft Matter Phys ; 85(5 Pt 2): 056306, 2012 May.
Article in English | MEDLINE | ID: mdl-23004861

ABSTRACT

We report the experimental studies on interaction of two vesicles trapped in a microfluidic four-roll mill, where a plane linear flow is realized. We found that the dynamics of a vesicle in tank-treading motion is significantly altered by the presence of another vesicle at separation distances up to 3.2-3.7 times of the vesicle effective radius. This result is supported by measurement of a single vesicle back-reaction on the velocity field. Thus the experiment provides the upper bound for the volume fraction φ = 0.08-0.13 of noninteracting vesicle suspensions.

15.
Phys Rev Lett ; 109(26): 268103, 2012 Dec 28.
Article in English | MEDLINE | ID: mdl-23368624

ABSTRACT

A novel noise amplification mechanism resulting from the interaction of thermal fluctuations and nonlinear vesicle dynamics is reported. It is observed in a time-dependent vesicle state called trembling (TR). High spatial resolution and very long time series of TR compared to the vesicle period allow us to quantitatively analyze the generation and amplification of spatial and temporal modes of the vesicle shape perturbations. During a compression part of each TR cycle, a vesicle finds itself on the edge of the wrinkling instability, where thermally excited spatial modes are amplified.

16.
Phys Rev E Stat Nonlin Soft Matter Phys ; 84(5 Pt 2): 056325, 2011 Nov.
Article in English | MEDLINE | ID: mdl-22181516

ABSTRACT

We report detailed quantitative studies of elastic turbulence in a curvilinear channel flow in a dilute polymer solution of high molecular weight polyacrylamide in a high viscosity water-sugar solvent. Detailed studies of the average and rms velocity and velocity gradients profiles reveal the emergence of a boundary layer associated with the nonuniform distribution of the elastic stresses across the channel. The characteristic boundary width is independent of the Weissenberg number Wi and proportional to the channel width, which is consistent with the findings our early investigations of the boundary layer in elastic turbulence in different flow geometries. The nonuniform distribution of the elastic stresses across the channel and appearance of the characteristic spatial scales of the order of the boundary layer width of both velocity and velocity gradient in the correlation functions of the velocity and velocity gradient fields in a bulk flow may suggest that excessive elastic stresses, concentrated in the boundary layer, are ejected into the bulk flow similar to jets observed in passive scalar mixing in elastic turbulence observed recently. Finally, the experimental results show that one of the main predictions of the theory of elastic turbulence, namely, the saturation of the normalized rms velocity gradient in the bulk flow of elastic turbulence contradicts the experimental observations both qualitatively and quantitatively in spite of the fact that the theory explains well the observed sharp power-law decay of the velocity power spectrum. The experimental findings call for further development of theory of elastic turbulence in a bounded container, similar to what was done for a passive scalar problem.


Subject(s)
Acrylic Resins/chemistry , Physics/methods , Polymers/chemistry , Algorithms , Elasticity , Equipment Design , Oscillometry/methods , Pressure , Solvents/chemistry , Temperature , Time Factors , Torque
17.
Phys Rev Lett ; 102(12): 124503, 2009 Mar 27.
Article in English | MEDLINE | ID: mdl-19392285

ABSTRACT

Injected power P and pressure p fluctuations in a swirling flow of polymer solutions in a wide range of polymer concentrations c in elastic turbulence regime show non-Gaussian statistics that strongly resemble statistical behavior of P and p in hydrodynamic turbulence. Together with this fact, weak dependence of the statistics of rescaled variables on c may suggest that there are universal mechanisms determining the intermittent statistics of P and p. We also show that the study of the statistics of p provides a way to study statistics of the elastic stresses in elastic turbulence otherwise currently unattainable.

18.
Phys Rev E Stat Nonlin Soft Matter Phys ; 78(4 Pt 1): 040801, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18999371

ABSTRACT

We present experimental results on relaxation dynamics of lambda-DNA and T4 polymer molecules toward a steady state in elongation flow. Strong critical slowing down (similar to the well-known effect in continuous phase transitions) in polymer relaxation near the coil-stretch transition (CST) is quantitatively investigated and found to be in good accord with predictions. For polymers with a small number of Kuhn segments the maximum of the relaxation time vs the strain rate provides precise information about the location of the CST and serves as its criterion.


Subject(s)
DNA, Viral/chemistry , Nucleic Acid Conformation , Polymers/chemistry , Bacteriophage T4/chemistry , Bacteriophage lambda/chemistry
19.
Phys Rev Lett ; 101(4): 048101, 2008 Jul 25.
Article in English | MEDLINE | ID: mdl-18764366

ABSTRACT

We present results on the stretching of single tubular vesicles in an elongation flow toward dumbbell shapes, and on their relaxation. A critical strain rate epsilonc exists; for strain rates epsilon

Subject(s)
Elastomers/chemistry , Unilamellar Liposomes/chemistry , 4-Chloro-7-nitrobenzofurazan/analogs & derivatives , 4-Chloro-7-nitrobenzofurazan/chemistry , Dimethylpolysiloxanes/chemistry , Elasticity , Nylons/chemistry , Phosphatidylcholines/chemistry
20.
Phys Rev Lett ; 99(17): 178102, 2007 Oct 26.
Article in English | MEDLINE | ID: mdl-17995373

ABSTRACT

We present experimental results on the relaxation dynamics of vesicles subjected to a time-dependent elongation flow. We observed and characterized a new instability, which results in the formation of higher-order modes of the vesicle shape (wrinkles), after a switch in the direction of the velocity gradient. This surprising generation of membrane wrinkles can be explained by the appearance of a negative surface tension during the vesicle deflation, which tunes itself to alternating stress. Moreover, the formation of buds in the vesicle membrane was observed in the vicinity of the dynamical transition point.


Subject(s)
Lipid Bilayers/chemistry , Membrane Fluidity , Membranes/chemistry , Models, Biological , Elasticity
SELECTION OF CITATIONS
SEARCH DETAIL
...