Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Proc Natl Acad Sci U S A ; 117(8): 4320-4327, 2020 02 25.
Article in English | MEDLINE | ID: mdl-32047037

ABSTRACT

The prognosis of chronic lymphocytic leukemia (CLL) depends on different markers, including cytogenetic aberrations, oncogenic mutations, and mutational status of the immunoglobulin (Ig) heavy-chain variable (IGHV) gene. The number of IGHV mutations distinguishes mutated (M) CLL with a markedly superior prognosis from unmutated (UM) CLL cases. In addition, B cell antigen receptor (BCR) stereotypes as defined by IGHV usage and complementarity-determining regions (CDRs) classify ∼30% of CLL cases into prognostically important subsets. Subset 2 expresses a BCR with the combination of IGHV3-21-derived heavy chains (HCs) with IGLV3-21-derived light chains (LCs), and is associated with an unfavorable prognosis. Importantly, the subset 2 LC carries a single-point mutation, termed R110, at the junction between the variable and constant LC regions. By analyzing 4 independent clinical cohorts through BCR sequencing and by immunophenotyping with antibodies specifically recognizing wild-type IGLV3-21 and R110-mutated IGLV3-21 (IGLV3-21R110), we show that IGLV3-21R110-expressing CLL represents a distinct subset with poor prognosis independent of IGHV mutations. Compared with other alleles, only IGLV3-21*01 facilitates effective homotypic BCR-BCR interaction that results in autonomous, oncogenic BCR signaling after acquiring R110 as a single-point mutation. Presumably, this mutation acts as a standalone driver that transforms IGLV3-21*01-expressing B cells to develop CLL. Thus, we propose to expand the conventional definition of CLL subset 2 to subset 2L by including all IGLV3-21R110-expressing CLL cases regardless of IGHV mutational status. Moreover, the generation of monoclonal antibodies recognizing IGLV3-21 or mutated IGLV3-21R110 facilitates the recognition of B cells carrying this mutation in CLL patients or healthy donors.


Subject(s)
Immunoglobulin lambda-Chains/genetics , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Receptors, Antigen, B-Cell/immunology , B-Lymphocytes/immunology , Cohort Studies , Complementarity Determining Regions/genetics , Complementarity Determining Regions/immunology , Genetic Predisposition to Disease , Humans , Immunoglobulin Heavy Chains/genetics , Immunoglobulin Heavy Chains/immunology , Immunoglobulin lambda-Chains/immunology , Leukemia, Lymphocytic, Chronic, B-Cell/immunology , Point Mutation , Receptors, Antigen, B-Cell/genetics
2.
Haematologica ; 105(5): 1379-1390, 2020 05.
Article in English | MEDLINE | ID: mdl-31467127

ABSTRACT

To identify genomic alterations contributing to the pathogenesis of high-risk chronic lymphocytic leukemia (CLL) beyond the well-established role of TP53 aberrations, we comprehensively analyzed 75 relapsed/refractory and 71 treatment-naïve high-risk cases from prospective clinical trials by single nucleotide polymorphism arrays and targeted next-generation sequencing. Increased genomic complexity was a hallmark of relapsed/refractory and treatment-naïve high-risk CLL. In relapsed/refractory cases previously exposed to the selective pressure of chemo(immuno)therapy, gain(8)(q24.21) and del(9)(p21.3) were particularly enriched. Both alterations affect key regulators of cell-cycle progression, namely MYC and CDKN2A/B While homozygous CDKN2A/B loss has been directly associated with Richter transformation, we did not find this association for heterozygous loss of CDKN2A/B Gains in 8q24.21 were either focal gains in a MYC enhancer region or large gains affecting the MYC locus, but only the latter type was highly enriched in relapsed/refractory CLL (17%). In addition to a high frequency of NOTCH1 mutations (23%), we found recurrent genetic alterations in SPEN (4% mutated), RBPJ (8% deleted) and SNW1 (8% deleted), all affecting a protein complex that represses transcription of NOTCH1 target genes. We investigated the functional impact of these alterations on HES1, DTX1 and MYC gene transcription and found derepression of these NOTCH1 target genes particularly with SPEN mutations. In summary, we provide new insights into the genomic architecture of high-risk CLL, define novel recurrent DNA copy number alterations and refine knowledge on del(9p), gain(8q) and alterations affecting NOTCH1 signaling. This study was registered at ClinicalTrials.gov with number NCT01392079.


Subject(s)
Leukemia, Lymphocytic, Chronic, B-Cell , Receptor, Notch1/genetics , Cell Cycle , Genomics , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Mutation , Prospective Studies
3.
4.
Leuk Lymphoma ; 59(7): 1614-1623, 2018 07.
Article in English | MEDLINE | ID: mdl-29063805

ABSTRACT

Telomere length in chronic lymphocytic leukemia (CLL) is described as an independent prognostic factor based largely on previously untreated patients from chemotherapy based trials. Here, we studied telomere length associations in high-risk, relapsed/refractory CLL treated with alemtuzumab in the CLL2O study (n = 110) of German and French CLL study groups. Telomere length (median 3.28 kb, range 2.52-7.24 kb) was relatively short, since 84.4% of patients had 17p- which is generally associated with short telomeres. Median telomere length was used for dichotomization into short and long telomere subgroups. Telomere length was associated with s-TK (p = .025) and TP53 mutations (p = .050) in untreated patients, while no association with clinical/biological characteristics was observed in relapsed/refractory CLL. Short telomeres had significant association with shorter PFS (p = .018) only in refractory CLL. Presence of short telomeres, loss of genes maintaining genomic integrity (SMC5) and increased incidence of chromothripsis, indicated the prevalence of genomic instability in this high-risk cohort (clinicaltrials.gov: NCT01392079).


Subject(s)
Genetic Association Studies , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , Telomere Homeostasis/genetics , Telomere/genetics , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Biomarkers, Tumor , Chromosome Aberrations , Genomic Instability , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/mortality , Leukemia, Lymphocytic, Chronic, B-Cell/therapy , Mutation , Polymorphism, Single Nucleotide , Prognosis , Survival Analysis , Telomere Shortening , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...