Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
J Phys Chem B ; 125(30): 8581-8587, 2021 08 05.
Article in English | MEDLINE | ID: mdl-34292738

ABSTRACT

The poor performance of many existing nonpolarizable ion force fields is typically blamed on either the lack of explicit polarizability, the absence of charge transfer, or the use of unreduced Coulomb interactions. However, this analysis disregards the large and mostly unexplored parameter range offered by the Lennard-Jones potential. We use a global optimization procedure to develop water-model-transferable force fields for the ions K+, Na+, Cl-, and Br- in the complete parameter space of all Lennard-Jones interactions using standard mixing rules. No extra-thermodynamic assumption is necessary for the simultaneous optimization of the four ion pairs. After an optimization with respect to the experimental solvation free energy and activity, the force fields reproduce the concentration-dependent density, ionic conductivity, and dielectric constant with high accuracy. The force field is fully transferable between simple point charge/extended and transferable intermolecular potential water models. Our results show that a thermodynamically consistent force field for these ions needs only Lennard-Jones and standard Coulomb interactions.


Subject(s)
Water , Entropy , Ions , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...