Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Immunol ; 9: 1230, 2018.
Article in English | MEDLINE | ID: mdl-29910816

ABSTRACT

The Notch receptor is an evolutionarily highly conserved transmembrane protein essential to a wide spectrum of cellular systems, and its deregulation has been linked to a vast number of developmental disorders and malignancies. Regulated Notch function is critical for the generation of T-cells, in which abnormal Notch signaling results in leukemia. Notch activation through trans-activation of the receptor by one of its ligands expressed on adjacent cells has been well defined. In this canonical ligand-dependent pathway, Notch receptor undergoes conformational changes upon ligand engagement, stimulated by a pulling-force on the extracellular fragment of Notch that results from endocytosis of the receptor-bound ligand into the ligand-expressing cell. These conformational changes in the receptor allow for two consecutive proteolytic cleavage events to occur, which release the intracellular region of the receptor into the cytoplasm. It can then travel to the nucleus, where it induces gene transcription. However, there is accumulating evidence that other pathways may induce Notch signaling. A ligand-independent mechanism of Notch activation has been described in which receptor processing is initiated via cell-internal signals. These signals result in the internalization of Notch into endosomal compartments, where chemical changes existing in this microenvironment result in the conformational modifications required for receptor processing. This review will present mechanisms underlying both canonical ligand-dependent and non-canonical ligand-independent Notch activation pathways and discuss the latter in the context of Notch signaling in T-cells.


Subject(s)
Receptors, Notch/metabolism , Signal Transduction , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Animals , Carrier Proteins/metabolism , Endocytosis , Humans , Ligands , Models, Biological , Protein Binding , Protein Transport , Receptors, Antigen, T-Cell/metabolism
2.
J Immunol ; 200(3): 997-1007, 2018 02 01.
Article in English | MEDLINE | ID: mdl-29288204

ABSTRACT

The Notch receptor is an evolutionarily highly conserved transmembrane protein that is essential to a wide spectrum of cellular systems. Notch signaling is especially important to T cell development, and its deregulation leads to leukemia. Although not well characterized, it continues to play an integral role in peripheral T cells, in which a unique mode of Notch activation can occur. In contrast to canonical Notch activation initiated by adjacent ligand-expressing cells, TCR stimulation is sufficient to induce Notch signaling. However, the interactions between these two pathways have not been defined. In this article, we show that Notch activation occurs in peripheral T cells within a few hours post-TCR stimulation and is required for optimal T cell activation. Using a panel of inhibitors against components of the TCR signaling cascade, we demonstrate that Notch activation is facilitated through initiation of protein kinase C-induced ADAM activity. Moreover, our data suggest that internalization of Notch via endocytosis plays a role in this process. Although ligand-mediated Notch stimulation relies on mechanical pulling forces that disrupt the autoinhibitory domain of Notch, we hypothesized that, in T cells in the absence of ligands, these conformational changes are induced through chemical adjustments in the endosome, causing alleviation of autoinhibition and receptor activation. Thus, T cells may have evolved a unique method of Notch receptor activation, which is described for the first time, to our knowledge, in this article.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , Lymphocyte Activation/immunology , Receptor, Notch1/metabolism , Receptors, Antigen, T-Cell/immunology , ADAM Proteins/metabolism , Animals , Cell Differentiation/immunology , Cell Line , Cell Proliferation/physiology , Endocytosis/immunology , Enzyme Activation/immunology , Mice , Mice, Inbred C57BL , Protein Kinase C/metabolism , Signal Transduction/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...