Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Protein Sci ; 25(7): 1319-31, 2016 07.
Article in English | MEDLINE | ID: mdl-26889885

ABSTRACT

Lactate and malate dehydrogenases (LDH and MDH) are homologous, core metabolic enzymes common to nearly all living organisms. LDHs have evolved convergently from MDHs at least four times, achieving altered substrate specificity by a different mechanism each time. For instance, the LDH of anaerobic trichomonad parasites recently evolved independently from an ancestral trichomonad MDH by gene duplication. LDH plays a central role in trichomonad metabolism by catalyzing the reduction of pyruvate to lactate, thereby regenerating the NAD+ required for glycolysis. Using ancestral reconstruction methods, we identified the biochemical and evolutionary mechanisms responsible for this convergent event. The last common ancestor of these enzymes was a highly specific MDH, similar to modern trichomonad MDHs. In contrast, the LDH lineage evolved promiscuous activity by relaxing specificity in a gradual process of neofunctionalization involving one highly detrimental substitution at the "specificity residue" (R91L) and many additional mutations of small effect. L91 has different functional consequences in LDHs and in MDHs, indicating a prominent role for epistasis. Crystal structures of modern-day and ancestral enzymes show that the evolution of substrate specificity paralleled structural changes in dimerization and α-helix orientation. The relatively small "specificity residue" of the trichomonad LDHs can accommodate a range of substrate sizes and may permit solvent to access the active site, both of which promote substrate promiscuity. The trichomonad LDHs present a multi-faceted counterpoint to the independent evolution of LDHs in other organisms and illustrate the diverse mechanisms by which protein function, structure, and stability coevolve.


Subject(s)
L-Lactate Dehydrogenase/genetics , L-Lactate Dehydrogenase/metabolism , Malate Dehydrogenase/genetics , Malate Dehydrogenase/metabolism , Trichomonadida/enzymology , Binding Sites , Crystallography, X-Ray , Dimerization , Evolution, Molecular , Gene Duplication , L-Lactate Dehydrogenase/chemistry , Malate Dehydrogenase/chemistry , Models, Molecular , Phylogeny , Protein Structure, Secondary , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Substrate Specificity
2.
Bioinformatics ; 28(15): 1972-9, 2012 Aug 01.
Article in English | MEDLINE | ID: mdl-22543369

ABSTRACT

MOTIVATION: Superpositioning is an essential technique in structural biology that facilitates the comparison and analysis of conformational differences among topologically similar structures. Performing a superposition requires a one-to-one correspondence, or alignment, of the point sets in the different structures. However, in practice, some points are usually 'missing' from several structures, for example, when the alignment contains gaps. Current superposition methods deal with missing data simply by superpositioning a subset of points that are shared among all the structures. This practice is inefficient, as it ignores important data, and it fails to satisfy the common least-squares criterion. In the extreme, disregarding missing positions prohibits the calculation of a superposition altogether. RESULTS: Here, we present a general solution for determining an optimal superposition when some of the data are missing. We use the expectation-maximization algorithm, a classic statistical technique for dealing with incomplete data, to find both maximum-likelihood solutions and the optimal least-squares solution as a special case. AVAILABILITY AND IMPLEMENTATION: The methods presented here are implemented in THESEUS 2.0, a program for superpositioning macromolecular structures. ANSI C source code and selected compiled binaries for various computing platforms are freely available under the GNU open source license from http://www.theseus3d.org. CONTACT: dtheobald@brandeis.edu SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Algorithms , Protein Structure, Tertiary , Sequence Alignment/methods , Software , Amino Acid Sequence , Least-Squares Analysis , Likelihood Functions , Models, Molecular
SELECTION OF CITATIONS
SEARCH DETAIL
...