Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Photochem Photobiol Sci ; 20(4): 547-558, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33876418

ABSTRACT

Nanoporous gold was functionalized with a photosensitizer, a zinc(II) phthalocyanine derivative. Such systems are active for the generation of reactive singlet oxygen which can be used for photocatalytic oxidation reactions. This study aims to demonstrate the versatility of such an approach, in terms of substrates and the employed solvent, only possible for a truly heterogeneous catalytic system. The activity of the hybrid system was studied for [4 + 2] cycloadditions of three different types of dienes and a total of eight substrates in two organic solvents and once in water. The highest activity was measured for 1,3-diphenylisobenzofuran, which is also highest in terms of sensitivity for the reaction with 1O2. Trends in conversion could be anticipated based on reported values for the rate constant for the reaction of 1O2. In almost all cases, an amplification of the conversion by immobilization of the sensitizer onto nanoporous gold was observed. The limiting case was ergosterol, which was the largest of all substrates with a van-der-Waals radius of about 2.1 nm. Additional factors such as the limited lifetime of 1O2 in different solvents as well as the hampered diffusion of the substrates were identified.

2.
RSC Adv ; 11(19): 11364-11372, 2021 Mar 16.
Article in English | MEDLINE | ID: mdl-35423609

ABSTRACT

A series of different singlet oxygen photosensitizers was immobilized onto nanoporous gold powder with a mean pore size of 40 nm via copper catalyzed azide-alkyne cycloaddition. The attachment of phthalocyanine and porphyrin derivatives was performed on the peripheral substituent of the macrocycle, whereas the subphthalocyanine derivatives were attached via the axial substituent with respect to the macrocyclic ring system. All obtained hybrid systems were studied in the photooxidation of 2,5-diphenylfuran as a chemical singlet oxygen quencher and showed increased photocatalytic activity compared to the same amount of the corresponding photosensitizer in solution due to photoinduced interactions of the plasmon resonance of the nanostructured gold support and the attached photosensitizer. The understanding of the different photophysical interactions depending on the coordination mode of the macrocycle as well as the position of the absorbance in the electromagnetic spectrum is an important point in the development towards highly active hybrid photocatalysts covering a broad absorption range within the spectrum of visible light.

3.
RSC Adv ; 10(39): 23203-23211, 2020 Jun 16.
Article in English | MEDLINE | ID: mdl-35520339

ABSTRACT

Nanoporous gold powder was functionalized in a two-step approach by an azide terminated alkanethiol self-assembled monolayer (SAM) and a zinc(ii) phthalocyanine (ZnPc) derivative by copper catalyzed azide-alkyne cycloaddition (CuAAC). A series of different hybrid systems with systematic variation of the alkyl chain length on both positions, the alkanethiol SAM and the peripheral substituents of the ZnPc derivative, was prepared and studied in the photooxidation of diphenylisobenzofuran (DPBF). An enhancement by nearly one order of magnitude was observed for the photosensitized singlet oxygen (1O2) generation of the hybrid systems compared to the same amount of ZnPc in solution caused by the interaction of the npAu surface plasmon resonance and the excited state of the immobilized sensitizer. This interaction was shown to be distance dependent, with decreasing activity for short SAMs with alkyl chain lengths < 6 methylene groups caused by quenching of the excited state via electron transfer as well as decreasing activity for SAMs with n > 8 methylene groups due to decreasing energy transfer for long distances. An unexpected distance dependent behaviour was observed for the variation of the peripheral alkyl chain on the photosensitizer revealing a planar orientation of the immobilized photosensitizer on the nanoporous gold surface by a penta-coordinated central zinc ion through interaction with free azide groups from the self-assembled monolayer.

4.
RSC Adv ; 10(1): 53-59, 2019 Dec 20.
Article in English | MEDLINE | ID: mdl-35492516

ABSTRACT

A series of singlet oxygen sensitizing hybrid materials is reported consisting of a zinc(ii) phthalocyanine (ZnPc) derivative immobilized on nanoporous gold leafs (npAu) with various pore sizes. The resulting photocatalytic coatings exhibit a thickness of around 100 nm and pore sizes between 9-50 nm. Herein, we report the synthesis and characterization of those hybrid materials which were synthesized by functionalization of npAu leafs by an azide terminated alkanethiol self-assembled monolayer (SAM) and subsequent copper catalyzed azide-alkyne cycloaddition (CuAAC). The characterization of the samples morphology included scanning electron microscopy (SEM), UV-Vis spectroscopy as well as energy dispersive X-ray spectroscopy (EDX). The morphology-reactivity relationship was investigated employing the hybrid photocatalysts in the photooxidation of diphenylisobenzofuran (DPBF) as selective singlet oxygen quencher. An increasing photocatalytic activity was found for smaller pore sizes up to 15 nm, due to the gain in specific surface area concomitant with an increasing amount of immobilized photosensitizer, completely dominating the effect of the higher spectral overlap caused by the shift of the plasmon resonance of npAu, until mass transport and diffusion limitation gets predominant for pore sizes below 15 nm.

5.
Org Lett ; 19(14): 3707-3710, 2017 07 21.
Article in English | MEDLINE | ID: mdl-28665612

ABSTRACT

A series of [5]helicenes difunctionalized in the fjord region with either fluoro, methoxy, or methyl groups was synthesized via photochemical and benzylic coupling route. Resolution of each compound into enantiomers and determination of the Gibbs activation energies of enantiomerization (ΔG⧧(T)) revealed high configurational stability in all three cases. The ΔG⧧(T) values of difunctionalized [5]helicenes were compared with those of their monofunctionalized analogues and the parent [5]helicene. Within this series, an exponential correlation between the torsional twist and ΔG⧧(T) was found. The dimethyl derivative exhibits one of the highest configurational stabilities among [n]helicenes reported to date, comparable to that of [9]helicene.

SELECTION OF CITATIONS
SEARCH DETAIL