Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 1306, 2023 Jan 24.
Article in English | MEDLINE | ID: mdl-36693881

ABSTRACT

Historically, observational information about atmospheric temperature has been limited due to a lack of suitable measurements. Recent advances in satellite observations provide new insight into the fine structure of the free atmosphere, with the upper troposphere and lower stratosphere comprising essential components of the climate system. This is a prerequisite for understanding the complex processes of this part of the atmosphere, which is also known to have a large impact on surface climate. With unprecedented resolution, latest climate observations reveal a dramatic warming of the atmosphere. The tropical upper troposphere has already warmed about 1 K during the first two decades of the 21st century. The tropospheric warming extends into the lower stratosphere in the tropics and southern hemisphere mid-latitudes, forming a prominent hemispheric asymmetry in the temperature trend structure. Together with seasonal trend patterns in the stratosphere, this indicates a possible change in stratospheric circulation.

2.
Sci Adv ; 7(45): eabi8065, 2021 Nov 05.
Article in English | MEDLINE | ID: mdl-34739322

ABSTRACT

Tropopause height (H) is a sensitive diagnostic for anthropogenic climate change. Previous studies showed increases in H over 1980­2000 but were inconsistent in projecting H trends after 2000. While H generally responds to temperature changes in the troposphere and stratosphere, the relative importance of these two contributions is uncertain. Here, we use radiosonde balloon observations in the Northern Hemisphere (NH) over 20°N to 80°N to reveal a continuous rise of H over 1980­2020. Over 2001­2020, H increases at 50 to 60 m/decade, which is comparable to the trend over 1980­2000. The GPS radio occultation measurements from satellites and homogenized radiosonde records are in good agreement with those results. The continuous rise of the tropopause in the NH after 2000 results primarily from tropospheric warming. A large trend in H remains after major natural forcings for H are removed, providing further observational evidence for anthropogenic climate change.

3.
Sci Rep ; 11(1): 22994, 2021 11 26.
Article in English | MEDLINE | ID: mdl-34836946

ABSTRACT

Wildfires are expected to become more frequent and intense in the future. They not only pose a serious threat to humans and ecosystems, but also affect Earth's atmosphere. Wildfire plumes can reach into the stratosphere, but little is known about their climate impact. Here, we reveal observational evidence that major wildfires can have a severe impact on the atmospheric temperature structure and short-term climate in the stratosphere. Using advanced satellite observation, we find substantial warming of up to 10 K of the lower stratosphere within the wildfire plumes during their early development. The short-term climate signal in the lower stratosphere lasts several months and amounts to 1 K for the Northern American wildfires in 2017, and up to striking 3.5 K for the Australian wildfires in 2020. This is stronger than any signal from recent volcanic eruptions. Such extreme events affect atmospheric composition and climate trends, underpinning their importance for future climate.

4.
Geophys Res Lett ; 47(14): e2020GL089027, 2020 Jul 28.
Article in English | MEDLINE | ID: mdl-32999515

ABSTRACT

A detailed analysis of double tropopause (DT) occurrences requires vertically well resolved, accurate, and globally distributed information on the troposphere-stratosphere transition zone. Here, we use radio occultation observations from 2001 to 2018 with such properties. We establish a connection between El Niño-Southern Oscillation (ENSO) phases and the distribution of DTs by analyzing the global and seasonal DT characteristics. The seasonal distribution of DTs reveals several hotspot locations, such as near the subtropical jet stream and over high mountain ranges, where DTs occur particularly often. In this study, we detect a higher number of DTs during the cold La Niña state while warmer El Niño events result in lower DT rates, affecting the structure of the tropopause region. Close to the Niño 3 region, this relates to a much lower first lapse rate tropopause altitude during La Niña and corresponds to an apparent narrowing of the tropical belt there.

5.
Geophys Res Lett ; 46(21): 12486-12494, 2019 Nov 16.
Article in English | MEDLINE | ID: mdl-31857737

ABSTRACT

Small volcanic eruptions and their effects have recently come into research focus. While large eruptions are known to strongly affect stratospheric temperature, the impacts of smaller eruptions are hard to quantify because their signals are masked by natural variability. Here, we quantify the temperature signals from small volcanic eruptions between 2002 and 2016 using new vertically resolved aerosol data and precise temperature observations from radio occultation. We find characteristic space-time signals that can be associated with specific eruptions. In the lower stratosphere, robust warming signals are observed, while in the midstratosphere also cooling signals of some eruptions appear. We find that the volcanic contribution to the temperature trend is up to 20%, depending on latitude and altitude. We conclude that detailed knowledge of the vertical structure of volcanic temperature impacts is crucial for comprehensive trend analysis in order to separate natural from anthropogenic temperature changes.

6.
Geophys Res Lett ; 45(12): 6311-6320, 2018 Jun 28.
Article in English | MEDLINE | ID: mdl-30364102

ABSTRACT

The impact of atmospheric blocking on European heat waves (HWs) and cold spells (CSs) is investigated for present and future conditions . A 50-member ensemble of the second generation Canadian Earth System Model is used to quantify the role of internal variability in the response to blocking. We find that the present blocking-extreme temperature link is well represented compared to ERA-Interim, despite a significant underestimation of blocking frequency in most ensemble members. Our results show a strong correlation of blocking with northern European HWs in summer, spring, and fall. However, we also find a strong anticorrelation between blocking and HW occurrence in southern Europe in all seasons. Blocking increases the CS frequency particularly in southern Europe in fall, winter, and spring but reduces it in summer. For the future we find that blocking will continue to play an important role in the development of both CSs and HWs in all seasons.

7.
PLoS One ; 13(7): e0200201, 2018.
Article in English | MEDLINE | ID: mdl-30044808

ABSTRACT

Spring frosts, as experienced in Europe in April 2016 and 2017, pose a considerable risk to agricultural production, with the potential to cause significant damages to agricultural yields. Meteorological blocking events (stable high-pressure systems) have been shown to be one of the factors that trigger cold spells in spring. While current knowledge does not allow for drawing conclusions as to any change in future frequency and duration of blocking episodes due to climate change, the combination of their stable occurrence with the biological system under a warming trend can lead to economic damage increases. To evaluate future frost risk for apple producers in south-eastern Styria, we combine a phenological sequential model with highly resolved climate projections for Austria. Our model projects a mean advance of blooming of -1.6 ± 0.9 days per decade, shifting the bloom onset towards early April by the end of the 21st century. Our findings indicate that overall frost risk for apple cultures will remain in a warmer climate and potentially even increase due to a stronger connection between blocking and cold spells in early spring that can be identified from observational data. To prospectively deal with frost risk, measures are needed that either stabilize crop yields or ensure farmers' income by other means. We identify appropriate adaptation measures and relate their costs to the potential frost risk increase. Even if applied successfully, the costs of these measures in combination with future residual damages represent additional climate change related costs.


Subject(s)
Climate , Crop Production , Freezing , Malus , Models, Theoretical , Acclimatization , Austria , Crop Production/economics , Flowers , Forecasting , Malus/physiology , Risk
8.
Geophys Res Lett ; 45(18): 9919-9933, 2018 Sep 28.
Article in English | MEDLINE | ID: mdl-32742043

ABSTRACT

Simulated stratospheric temperatures over the period 1979-2016 in models from the Chemistry-Climate Model Initiative (CCMI) are compared with recently updated and extended satellite observations. The multi-model mean global temperature trends over 1979- 2005 are -0.88 ± 0.23, -0.70 ± 0.16, and -0.50 ± 0.12 K decade-1 for the Stratospheric Sounding Unit (SSU) channels 3 (~40-50 km), 2 (~35-45 km), and 1 (~25-35 km), respectively. These are within the uncertainty bounds of the observed temperature trends from two reprocessed satellite datasets. In the lower stratosphere, the multi-model mean trend in global temperature for the Microwave Sounding Unit channel 4 (~13-22 km) is -0.25 ± 0.12 K decade-1 over 1979-2005, consistent with estimates from three versions of this satellite record. The simulated stratospheric temperature trends in CCMI models over 1979-2005 agree with the previous generation of chemistry-climate models. The models and an extended satellite dataset of SSU with the Advanced Microwave Sounding Unit-A show weaker global stratospheric cooling over 1998-2016 compared to the period of intensive ozone depletion (1979-1997). This is due to the reduction in ozone-induced cooling from the slow-down of ozone trends and the onset of ozone recovery since the late 1990s. In summary, the results show much better consistency between simulated and satellite observed stratospheric temperature trends than was reported by Thompson et al. (2012) for the previous versions of the SSU record and chemistry-climate models. The improved agreement mainly comes from updates to the satellite records; the range of simulated trends is comparable to the previous generation of models.

9.
J Geophys Res Atmos ; 122(3): 1595-1616, 2017 02 16.
Article in English | MEDLINE | ID: mdl-28516029

ABSTRACT

High-resolution measurements from Global Navigation Satellite System (GNSS) radio occultation (RO) provide atmospheric profiles with independent information on altitude and pressure. This unique property is of crucial advantage when analyzing atmospheric characteristics that require joint knowledge of altitude and pressure or other thermodynamic atmospheric variables. Here we introduce and demonstrate the utility of this independent information from RO and discuss the computation, uncertainty, and use of RO atmospheric profiles on isohypsic coordinates-mean sea level altitude and geopotential height-as well as on thermodynamic coordinates (pressure and potential temperature). Using geopotential height as vertical grid, we give information on errors of RO-derived temperature, pressure, and potential temperature profiles and provide an empirical error model which accounts for seasonal and latitudinal variations. The observational uncertainty of individual temperature/pressure/potential temperature profiles is about 0.7 K/0.15%/1.4 K in the tropopause region. It gradually increases into the stratosphere and decreases toward the lower troposphere. This decrease is due to the increasing influence of background information. The total climatological error of mean atmospheric fields is, in general, dominated by the systematic error component. We use sampling error-corrected climatological fields to demonstrate the power of having different and accurate vertical coordinates available. As examples we analyze characteristics of the location of the tropopause for geopotential height, pressure, and potential temperature coordinates as well as seasonal variations of the midlatitude jet stream core. This highlights the broad applicability of RO and the utility of its versatile vertical geolocation for investigating the vertical structure of the troposphere and stratosphere.

SELECTION OF CITATIONS
SEARCH DETAIL
...