Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
RNA ; 30(8): 1089-1105, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38760076

ABSTRACT

Many transcription factors (TFs) have been shown to bind RNA, leading to open questions regarding the mechanism(s) of this RNA binding and its role in regulating TF activities. Here, we use biophysical assays to interrogate the k on, k off, and K d for DNA and RNA binding of two model human TFs, ERα and Sox2. Unexpectedly, we found that both proteins exhibit multiphasic nucleic acid-binding kinetics. We propose that Sox2 RNA and DNA multiphasic binding kinetics can be explained by a conventional model for sequential Sox2 monomer association and dissociation. In contrast, ERα nucleic acid binding exhibited biphasic dissociation paired with novel triphasic association behavior, in which two apparent binding transitions are separated by a 10-20 min "lag" phase depending on protein concentration. We considered several conventional models for the observed kinetic behavior, none of which adequately explained all the ERα nucleic acid-binding data. Instead, simulations with a model incorporating sequential ERα monomer association, ERα nucleic acid complex isomerization, and product "feedback" on isomerization rate recapitulated the general kinetic trends for both ERα DNA and RNA binding. Collectively, our findings reveal that Sox2 and ERα bind RNA and DNA with previously unappreciated multiphasic binding kinetics, and that their reaction mechanisms differ with ERα binding nucleic acids via a novel reaction mechanism.


Subject(s)
DNA , Estrogen Receptor alpha , Protein Binding , RNA , SOXB1 Transcription Factors , SOXB1 Transcription Factors/metabolism , SOXB1 Transcription Factors/genetics , SOXB1 Transcription Factors/chemistry , Humans , Estrogen Receptor alpha/metabolism , Estrogen Receptor alpha/genetics , Estrogen Receptor alpha/chemistry , DNA/metabolism , DNA/chemistry , RNA/metabolism , RNA/chemistry , RNA/genetics , Kinetics , Binding Sites
2.
bioRxiv ; 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38562825

ABSTRACT

Many transcription factors (TFs) have been shown to bind RNA, leading to open questions regarding the mechanism(s) of this RNA binding and its role in regulating TF activities. Here we use biophysical assays to interrogate the kon,koff, and Kd for DNA and RNA binding of two model human transcription factors, ERα and Sox2. Unexpectedly, we found that both proteins exhibited multiphasic nucleic acid binding kinetics. We propose that Sox2 RNA and DNA multiphasic binding kinetics could be explained by a conventional model for sequential Sox2 monomer association and dissociation. In contrast, ERα nucleic acid binding exhibited biphasic dissociation paired with novel triphasic association behavior, where two apparent binding transitions are separated by a 10-20 min "lag" phase depending on protein concentration. We considered several conventional models for the observed kinetic behavior, none of which adequately explained all the ERα nucleic acid binding data. Instead, simulations with a model incorporating sequential ERα monomer association, ERα nucleic acid complex isomerization, and product "feedback" on isomerization rate recapitulated the general kinetic trends for both ERα DNA and RNA binding. Collectively, our findings reveal that Sox2 and ERα bind RNA and DNA with previously unappreciated multiphasic binding kinetics, and that their reaction mechanisms differ with ERα binding nucleic acids via a novel reaction mechanism.

3.
mBio ; : e0171223, 2023 Nov 09.
Article in English | MEDLINE | ID: mdl-37943059

ABSTRACT

The COVID-19 pandemic demonstrated the poor ability of body temperature to reliably identify SARS-CoV-2-infected individuals, an observation that has been made before in the context of other infectious diseases. While acute infection does not always cause fever, it does reliably drive host transcriptional responses as the body responds at the site of infection. These transcriptional changes can occur both in cells that are directly harboring replicating pathogens and in cells elsewhere that receive a molecular signal that infection is occurring. Here, we identify a core set of approximately 70 human genes that are together upregulated in cultured human cells infected by a broad array of viral, bacterial, and fungal pathogens. We have named these "core response" genes. In theory, transcripts from these genes could serve as biomarkers of infection in the human body, in a way that is agnostic to the specific pathogen causing infection. As such, we perform human studies to show that these infection-induced human transcripts can be measured in the saliva of people harboring different types of infections. The number of these transcripts in saliva can correctly classify infection status (whether a person harbors an infection) 91% of the time. Furthermore, in the case of SARS-CoV-2 specifically, the number of core response transcripts in saliva correctly identifies infectious individuals even when enrollees, themselves, are asymptomatic and do not know they are infected.IMPORTANCEThere are a variety of clinical and laboratory criteria available to clinicians in controlled healthcare settings to help them identify whether an infectious disease is present. However, in situations such as a new epidemic caused by an unknown infectious agent, in health screening contexts performed within communities and outside of healthcare facilities or in battlefield or potential biowarfare situations, this gets more difficult. Pathogen-agnostic methods for rapid screening and triage of large numbers of people for infection status are needed, in particular methods that might work on an easily accessible biospecimen like saliva. Here, we identify a small, core set of approximately 70 human genes whose transcripts serve as saliva-based biomarkers of infection in the human body, in a way that is agnostic to the specific pathogen causing infection.

4.
Biochemistry ; 61(22): 2490-2494, 2022 11 15.
Article in English | MEDLINE | ID: mdl-36239332

ABSTRACT

Estrogen receptor alpha (ERα) is a ligand-responsive transcription factor critical for sex determination and development. Recent reports challenge the canonical view of ERα function by suggesting an activity beyond binding dsDNA at estrogen-responsive promotor elements: association with RNAs in vivo. Whether these interactions are direct or indirect remains unknown, which limits the ability to understand the extent, specificity, and biological role of ERα-RNA binding. Here we demonstrate that an extended DNA-binding domain of ERα directly binds a wide range of RNAs in vitro with structural specificity. ERα binds RNAs that adopt a range of hairpin-derived structures independent of sequence, while interacting poorly with single- and double-stranded RNA. RNA affinities are only 4-fold weaker than consensus dsDNA and significantly tighter than nonconsensus dsDNA sequences. Moreover, RNA binding is competitive with DNA binding. Together, these data show that ERα utilizes an extended DNA-binding domain to achieve a high-affinity/low-specificity mode for interacting with RNA.


Subject(s)
Estrogen Receptor alpha , RNA , Estrogen Receptor alpha/chemistry , Protein Binding , RNA/genetics , RNA/metabolism , Transcription Factors/metabolism , DNA/chemistry
5.
Viruses ; 12(11)2020 11 19.
Article in English | MEDLINE | ID: mdl-33228135

ABSTRACT

Serpentoviruses are an emerging group of nidoviruses known to cause respiratory disease in snakes and have been associated with disease in other non-avian reptile species (lizards and turtles). This study describes multiple episodes of respiratory disease-associated mortalities in a collection of juvenile veiled chameleons (Chamaeleo calyptratus). Histopathologic lesions included rhinitis and interstitial pneumonia with epithelial proliferation and abundant mucus. Metagenomic sequencing detected coinfection with two novel serpentoviruses and a novel orthoreovirus. Veiled chameleon serpentoviruses are most closely related to serpentoviruses identified in snakes, lizards, and turtles (approximately 40-50% nucleotide and amino acid identity of ORF1b). Veiled chameleon orthoreovirus is most closely related to reptilian orthoreoviruses identified in snakes (approximately 80-90% nucleotide and amino acid identity of the RNA-dependent RNA polymerase). A high prevalence of serpentovirus infection (>80%) was found in clinically healthy subadult and adult veiled chameleons, suggesting the potential for chronic subclinical carriers. Juvenile veiled chameleons typically exhibited a more rapid progression compared to subadults and adults, indicating a possible age association with morbidity and mortality. This is the first description of a serpentovirus infection in any chameleon species. A causal relationship between serpentovirus infection and respiratory disease in chameleons is suspected. The significance of orthoreovirus coinfection remains unknown.


Subject(s)
Coinfection/veterinary , Lizards/virology , Lung Diseases, Interstitial/veterinary , Nidovirales/pathogenicity , Orthoreovirus/pathogenicity , Reoviridae Infections/veterinary , Animals , Animals, Zoo/virology , Coinfection/virology , Disease Outbreaks/veterinary , Female , Lung Diseases, Interstitial/virology , Male , Metagenomics , Nidovirales/genetics , Orthoreovirus/genetics , Prevalence
6.
Viruses ; 11(10)2019 10 14.
Article in English | MEDLINE | ID: mdl-31615058

ABSTRACT

RNA viruses are a major source of emerging and re-emerging infectious diseases around the world. We developed a method to identify RNA viruses that is based on the fact that RNA viruses produce double-stranded RNA (dsRNA) while replicating. Purifying and sequencing dsRNA from the total RNA isolated from infected tissue allowed us to recover dsRNA virus sequences and replicated sequences from single-stranded RNA (ssRNA) viruses. We refer to this approach as dsRNA-Seq. By assembling dsRNA sequences into contigs we identified full length or partial RNA viral genomes of varying genome types infecting mammalian culture samples, identified a known viral disease agent in laboratory infected mice, and successfully detected naturally occurring RNA viral infections in reptiles. Here, we show that dsRNA-Seq is a preferable method for identifying viruses in organisms that don't have sequenced genomes and/or commercially available rRNA depletion reagents. In addition, a significant advantage of this method is the ability to identify replicated viral sequences of ssRNA viruses, which is useful for distinguishing infectious viral agents from potential noninfectious viral particles or contaminants.


Subject(s)
High-Throughput Nucleotide Sequencing , RNA Virus Infections/virology , RNA Viruses/genetics , RNA, Double-Stranded/isolation & purification , Animals , Chlorocebus aethiops , Genome, Viral , Mice , RNA Viruses/isolation & purification , RNA, Viral/isolation & purification , RNA-Seq , Vero Cells , Virion , Virus Replication
SELECTION OF CITATIONS
SEARCH DETAIL
...