Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
Add more filters










Publication year range
1.
Mol Neurobiol ; 61(4): 1907-1919, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37807008

ABSTRACT

Selective serotonin reuptake inhibitors (SSRIs), including fluoxetine, are frequently combined with medical psychostimulants such as methylphenidate (Ritalin), for example, in the treatment of attention-deficit hyperactivity disorder/depression comorbidity. Co-exposure to these medications also occurs with misuse of methylphenidate as a recreational drug by patients on SSRIs. Methylphenidate, a dopamine reuptake blocker, produces moderate addiction-related gene regulation. Findings show that SSRIs such as fluoxetine given in conjunction with methylphenidate potentiate methylphenidate-induced gene regulation in the striatum in rats, consistent with a facilitatory action of serotonin on addiction-related processes. These SSRIs may thus increase methylphenidate's addiction liability. Here, we investigated the effects of a novel SSRI, vilazodone, on methylphenidate-induced gene regulation. Vilazodone differs from prototypical SSRIs in that, in addition to blocking serotonin reuptake, it acts as a partial agonist at the 5-HT1A serotonin receptor subtype. Studies showed that stimulation of the 5-HT1A receptor tempers serotonin input to the striatum. We compared the effects of acute treatment with vilazodone (10-20 mg/kg) with those of fluoxetine (5 mg/kg) on striatal gene regulation (zif268, substance P, enkephalin) induced by methylphenidate (5 mg/kg), by in situ hybridization histochemistry combined with autoradiography. We also assessed the impact of blocking 5-HT1A receptors by the selective antagonist WAY-100635 (0.5 mg/kg) on these responses. Behavioral effects of these drug treatments were examined in parallel in an open-field test. Our results show that, in contrast to fluoxetine, vilazodone did not potentiate gene regulation induced by methylphenidate in the striatum, while vilazodone enhanced methylphenidate-induced locomotor activity. However, blocking 5-HT1A receptors by WAY-100635 unmasked a potentiating effect of vilazodone on methylphenidate-induced gene regulation, thus confirming an inhibitory role for 5-HT1A receptors. Our findings suggest that vilazodone may serve as an adjunct SSRI with diminished addiction facilitating properties and identify the 5-HT1A receptor as a potential therapeutic target to treat addiction.


Subject(s)
Methylphenidate , Selective Serotonin Reuptake Inhibitors , Humans , Rats , Animals , Vilazodone Hydrochloride , Fluoxetine/pharmacology , Methylphenidate/pharmacology , Receptor, Serotonin, 5-HT1A , Serotonin
2.
Article in English | MEDLINE | ID: mdl-38086900

ABSTRACT

Methylphenidate (MP) is commonly prescribed to treat attention-deficit hyperactivity disorder (ADHD). MP is also taken for non-medical purposes as a recreational drug or "cognitive enhancer". Combined exposure to MP and selective serotonin reuptake inhibitors such as fluoxetine (FLX) can also occur, such as in the treatment of ADHD with depression comorbidity or when patients taking FLX use MP for non-medical purposes. It is unclear if such exposure could subsequently increase the risk for relapse in former cocaine users. We investigated if an acute challenge with MP, FLX, or the combination of MP + FLX could trigger reinstatement of cocaine seeking behavior in a model for relapse in rats. Juvenile rats self-administered cocaine (600 µg/kg/infusion, 1-2 h/day, 7-8 days) and then underwent extinction and withdrawal during late adolescence-early adulthood. Reinstatement was tested at a low dose of MP (2 mg/kg, I.P., comparable to doses used therapeutically) or a high dose of MP (5 mg/kg, comparable to doses used recreationally or as a cognitive enhancer), with or without FLX (2.5-5 mg/kg, I.P.). An acute challenge with the high dose of MP (5 mg/kg), with or without FLX, reinstated cocaine seeking behavior to levels comparable to those seen after an acute challenge with cocaine (15 mg/kg, I.P.). The low dose of MP (2 mg/kg) with or without FLX did not reinstate cocaine seeking behavior. Our results suggest that acute exposure to a high dose of MP, with or without FLX, may increase the risk for relapse in individuals who used cocaine during the juvenile period.

3.
Curr Pharm Biotechnol ; 24(10): 1307-1314, 2023.
Article in English | MEDLINE | ID: mdl-36306463

ABSTRACT

BACKGROUND: Attention Deficit Hyperactivity Disorder (ADHD) can be comorbid with depression, often leading to the prescription of both methylphenidate (MP) and selective serotonin reuptake inhibitor (SSRI) antidepressants, such as fluoxetine (FLX). Moreover, these drugs are often misused as cognitive enhancers. This study examined the effects of chronic oral co-administration of MP and FLX on depressive- and anxiety-like behaviors. METHODS: Adolescent rats received daily either water (control), MP, FLX, or the combination of MP plus FLX in their drinking water over the course of 4 weeks. RESULTS: Data analysis shows a decrease in food consumption and body weight for rats exposed to FLX or the combination of MP and FLX. Sucrose consumption was significantly greater in FLX or MP+FLX groups compared to controls. FLX-treated rats showed no effect in the elevated plus maze (EPM; open arm time) and forced swim test (FST; latency to immobility). However, rats treated with the combination (MP+FLX) showed significant anxiolytic-like and anti-depressive-like behaviors (as measured by EPM and FST), as well as significant increases in overall activity (distance traveled in open field test). Finally, the combined MP+FLX treatment induced a decrease in anxiety and depressive- like behaviors significantly greater than the response from either of these drugs alone. CONCLUSION: These behavioral results characterize the long-term effects of these drugs (orally administered) that are widely co-administered and co-misused and provide important insight into the potential neurobiological and neurochemical effects. Future research will determine the potential risks of the long-term use of MP and FLX together.


Subject(s)
Attention Deficit Disorder with Hyperactivity , Methylphenidate , Rats , Animals , Fluoxetine/therapeutic use , Methylphenidate/therapeutic use , Methylphenidate/pharmacology , Selective Serotonin Reuptake Inhibitors/therapeutic use , Anxiety/drug therapy
4.
Addict Neurosci ; 82023 Dec.
Article in English | MEDLINE | ID: mdl-38274857

ABSTRACT

Background: Depression and attention deficit hyperactivity disorder are known to be comorbid. Treatment of these commonly coexisting diseases typically involves the combined prescription of methylphenidate (MP), a psychostimulant, and fluoxetine (FLX), a selective serotonin reuptake inhibitor (SSRI). MP and cocaine have similar mechanisms of action and this study examined the effects of chronic treatment of MP combined with FLX on cocaine consumption in rats. Methods: Four groups of rats received access to drinking solutions of water (control), MP (30/60 mg/kg/day), FLX (20 mg/kg/day), or the combination of MP (30/60 mg/kg/day) plus FLX (20 mg/kg/day), during 8 h per day for one month. Following these drug treatments, rats were allowed to self-administer cocaine for 14 days. Results: Our results showed that, during the first week of cocaine self-administration, the MP-treated rats had significantly greater numbers of active lever presses (plus 127%) and increased consumption of cocaine compared to the control rats. In contrast, during week two of cocaine self-administration, the rats treated with the MP + FLX combination showed significantly more lever presses (plus 198%) and significantly greater cocaine consumption (plus 84%) compared to the water controls. Conclusion: Chronic oral treatment during adolescence with the combination of MP plus FLX resulted in increased cocaine use after 2 weeks of cocaine self-administration in rats. These novel findings suggest that the combined exposure to these two drugs chronically, during adolescence, may produce increased vulnerability towards cocaine abuse during young adulthood.

5.
Addict Neurosci ; 92023 Dec 15.
Article in English | MEDLINE | ID: mdl-38222942

ABSTRACT

The medical psychostimulant methylphenidate (MP) is used to treat attention-deficit hyperactivity disorder and recreationally as a "cognitive enhancer". MP is a dopamine reuptake inhibitor, but does not affect serotonin. Serotonin contributes to addiction-related gene regulation and behavior. Previously, we showed that enhancing serotonin action by adding a selective serotonin reuptake inhibitor, fluoxetine (FLX), to MP potentiates MP-induced gene regulation in striatum and nucleus accumbens, mimicking cocaine effects. Here, we investigated the behavioral consequences of MP+FLX treatment. Young adult male rats received MP (5 mg/kg, i.p.) or MP+FLX (5 mg/kg each) daily for 6-8 days. Behavioral effects were assessed in an open-field test during the repeated treatment. Two weeks later the motor response to a cocaine challenge (25 mg/kg) and the rate of acquisition of cocaine self-administration behavior were determined. Our results demonstrate that FLX potentiates effects of MP on open-field behavior. However, we found differential behavioral responses to MP+FLX treatment, as approximately half of the rats developed high rates of focal stereotypies (termed "MP+FLX/high reactivity" group), whereas the other half did not, and only showed increased locomotion ("MP+FLX/low reactivity" group). Two weeks later, cocaine-induced locomotion and stereotypies were positively correlated with MP+FLX-induced behavior seen at the end of the repeated MP+FLX treatment. Moreover, the MP+FLX/high reactivity group, but not the low reactivity group, showed facilitated acquisition of cocaine self-administration. These results demonstrate that repeated MP+FLX treatment can facilitate subsequent cocaine taking behavior in a subpopulation of rats. These findings suggest that MP+FLX exposure in some individuals may increase the risk for psychostimulant use later in life.

6.
Cells ; 11(14)2022 07 16.
Article in English | MEDLINE | ID: mdl-35883657

ABSTRACT

Dopamine and other neurotransmitters have the potential to induce neuroplasticity in the striatum via gene regulation. Dopamine receptor-mediated gene regulation relies on second messenger cascades that involve cyclic nucleotides to relay signaling from the synapse to the nucleus. Phosphodiesterases (PDEs) catalyze cyclic nucleotides and thus potently control cyclic nucleotide signaling. We investigated the role of the most abundant striatal PDE, PDE10A, in striatal gene regulation by assessing the effects of PDE10A inhibition (by a selective PDE10A inhibitor, TP-10) on gene regulation and by comparing the basal expression of PDE10A mRNA throughout the striatum with gene induction by dopamine agonists in the intact or dopamine-depleted striatum. Our findings show that PDE10A expression is most abundant in the sensorimotor striatum, intermediate in the associative striatum and lower in the limbic striatum. The inhibition of PDE10A produced pronounced increases in gene expression that were directly related to levels of local PDE10A expression. Moreover, the gene expression induced by L-DOPA after dopamine depletion (by 6-OHDA), or by psychostimulants (cocaine, methylphenidate) in the intact striatum, was also positively correlated with the levels of local PDE10A expression. This relationship was found for gene markers of both D1 receptor- and D2 receptor-expressing striatal projection neurons. Collectively, these results indicate that PDE10A, a vital part of the dopamine receptor-associated second messenger machinery, is tightly linked to drug-induced gene regulation in the striatum. PDE10A may thus serve as a potential target for modifying drug-induced gene regulation and related neuroplasticity.


Subject(s)
Dopamine Agonists , Dopamine , Dopamine/metabolism , Dopamine Agonists/pharmacology , Gene Expression , Nucleotides, Cyclic , Phosphoric Diester Hydrolases/genetics , Phosphoric Diester Hydrolases/metabolism , Receptors, Dopamine D1/metabolism
7.
Molecules ; 26(19)2021 Sep 24.
Article in English | MEDLINE | ID: mdl-34641332

ABSTRACT

L-DOPA therapy in Parkinson's disease (PD) is limited due to emerging L-DOPA-induced dyskinesia. Research has identified abnormal dopamine release from serotonergic (5-HT) terminals contributing to this dyskinesia. Selective serotonin reuptake inhibitors (SSRIs) or 5-HT receptor (5-HTr) agonists can regulate 5-HT activity and attenuate dyskinesia, but they often also produce a loss of the antiparkinsonian efficacy of L-DOPA. We investigated vilazodone, a novel multimodal 5-HT agent with SSRI and 5-HTr1A partial agonist properties, for its potential to reduce dyskinesia without interfering with the prokinetic effects of L-DOPA, and underlying mechanisms. We assessed vilazodone effects on L-DOPA-induced dyskinesia (abnormal involuntary movements, AIMs) and aberrant responsiveness to corticostriatal drive in striatal medium spiny neurons (MSNs) measured with in vivo single-unit extracellular recordings, in the 6-OHDA rat model of PD. Vilazodone (10 mg/kg) suppressed all subtypes (axial, limb, orolingual) of AIMs induced by L-DOPA (5 mg/kg) and the increase in MSN responsiveness to cortical stimulation (shorter spike onset latency). Both the antidyskinetic effects and reversal in MSN excitability by vilazodone were inhibited by the 5-HTr1A antagonist WAY-100635, demonstrating a critical role for 5-HTr1A in these vilazodone actions. Our results indicate that vilazodone may serve as an adjunct therapeutic for reducing dyskinesia in patients with PD.


Subject(s)
Dyskinesia, Drug-Induced/prevention & control , Levodopa/administration & dosage , Oxidopamine/adverse effects , Parkinson Disease/drug therapy , Receptor, Serotonin, 5-HT1A/metabolism , Vilazodone Hydrochloride/administration & dosage , Animals , Corpus Striatum/drug effects , Disease Models, Animal , Dyskinesia, Drug-Induced/metabolism , Gene Expression Regulation , Levodopa/adverse effects , Male , Parkinson Disease/etiology , Parkinson Disease/metabolism , Rats , Rats, Sprague-Dawley , Vilazodone Hydrochloride/pharmacology
8.
Mol Neurobiol ; 58(10): 4856-4870, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34213723

ABSTRACT

Methylphenidate (MP) is combined with selective serotonin reuptake inhibitors (SSRIs) such as fluoxetine (FLX) to treat various disorders. MP, a dopamine reuptake inhibitor, helps manage attention-deficit hyperactivity disorder (ADHD) and is abused as a cognitive enhancer; it has a reduced addiction liability. We showed that combining FLX (serotonin) with MP potentiates MP-induced gene regulation in the striatum. These studies used intraperitoneal drug administration, which is relevant for MP abuse. Clinically, MP and FLX are taken orally (slower bioavailability). Here, we investigated whether chronic oral administration of MP and FLX also altered striatal gene regulation. MP (30/60 mg/kg/day), FLX (20 mg/kg/day), and MP + FLX were administered in rats' drinking water for 8 h/day over 4 weeks. We assessed the expression of dynorphin and substance P (both markers for striatal direct pathway neurons) and enkephalin (indirect pathway) by in situ hybridization histochemistry. Chronic oral MP alone produced a tendency for increased dynorphin and substance P expression and no changes in enkephalin expression. Oral FLX alone did not increase gene expression. In contrast, when given together, FLX greatly enhanced MP-induced expression of dynorphin and substance P and to a lesser degree enkephalin. Thus, FLX potentiated oral MP-induced gene regulation predominantly in direct pathway neurons, mimicking cocaine effects. The three functional domains of the striatum were differentially affected. MP + SSRI concomitant therapies are indicated in ADHD/depression comorbidity and co-exposure occurs with MP misuse as a cognitive enhancer by patients on SSRIs. Our findings indicate that MP + SSRI combinations, even given orally, may enhance addiction-related gene regulation.


Subject(s)
Corpus Striatum/drug effects , Dopamine Uptake Inhibitors/administration & dosage , Fluoxetine/administration & dosage , Gene Expression Regulation/drug effects , Methylphenidate/administration & dosage , Selective Serotonin Reuptake Inhibitors/administration & dosage , Administration, Oral , Animals , Corpus Striatum/metabolism , Drug Synergism , Gene Expression Regulation/physiology , Male , Rats , Rats, Sprague-Dawley
9.
Cells ; 9(10)2020 10 09.
Article in English | MEDLINE | ID: mdl-33050305

ABSTRACT

Levodopa (L-DOPA) treatment in Parkinson's disease is limited by the emergence of L-DOPA-induced dyskinesia. Such dyskinesia is associated with aberrant gene regulation in neurons of the striatum, which is caused by abnormal dopamine release from serotonin terminals. Previous work showed that modulating the striatal serotonin innervation with selective serotonin reuptake inhibitors (SSRIs) or 5-HT1A receptor agonists could attenuate L-DOPA-induced dyskinesia. We investigated the effects of a novel serotonergic agent, vilazodone, which combines SSRI and 5-HT1A partial agonist properties, on L-DOPA-induced behavior and gene regulation in the striatum in an animal model of Parkinson's disease. After unilateral dopamine depletion by 6-hydroxydopamine (6-OHDA), rats received repeated L-DOPA treatment (5 mg/kg) alone or in combination with vilazodone (10 mg/kg) for 3 weeks. Gene regulation was then mapped throughout the striatum using in situ hybridization histochemistry. Vilazodone suppressed the development of L-DOPA-induced dyskinesia and turning behavior but did not interfere with the prokinetic effects of L-DOPA (forelimb stepping). L-DOPA treatment drastically increased the expression of dynorphin (direct pathway), 5-HT1B, and zif268 mRNA in the striatum ipsilateral to the lesion. These effects were inhibited by vilazodone. In contrast, vilazodone had no effect on enkephalin expression (indirect pathway) or on gene expression in the intact striatum. Thus, vilazodone inhibited L-DOPA-induced gene regulation selectively in the direct pathway of the dopamine-depleted striatum, molecular changes that are considered critical for L-DOPA-induced dyskinesia. These findings position vilazodone, an approved antidepressant, as a potential adjunct medication for the treatment of L-DOPA-induced motor side effects.


Subject(s)
Dyskinesias/drug therapy , Parkinson Disease/metabolism , Vilazodone Hydrochloride/pharmacology , Animals , Corpus Striatum/drug effects , Corpus Striatum/metabolism , Corpus Striatum/pathology , Disease Models, Animal , Dopamine/metabolism , Gene Expression Regulation/drug effects , Levodopa/metabolism , Levodopa/therapeutic use , Male , Neurons/drug effects , Neurons/metabolism , Parkinson Disease/genetics , Rats , Rats, Sprague-Dawley , Serotonin/metabolism , Vilazodone Hydrochloride/metabolism , Vilazodone Hydrochloride/therapeutic use
10.
Mol Neurobiol ; 57(2): 736-751, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31468338

ABSTRACT

Dopamine and serotonin in the basal ganglia interact in a bidirectional manner. On the one hand, serotonin (5-HT) receptors regulate the effects of dopamine agonists on several levels, ranging from molecular signaling to behavior. These interactions include 5-HT receptor-mediated facilitation of dopamine receptor-induced gene regulation in striatal output pathways, which involves the 5-HT1B receptor and others. Conversely, there is evidence that dopamine action by psychostimulants regulates 5-HT1B receptor expression in the striatum. To further investigate the effects of dopamine and agonists on 5-HT receptors, we assessed the expression of 5-HT1B and other serotonin receptor subtypes in the striatum after unilateral dopamine depletion by 6-OHDA and subsequent treatment with L-DOPA (5 mg/kg; 4 weeks). Neither dopamine depletion nor L-DOPA treatment produced significant changes in 5-HT2C, 5-HT4, or 5-HT6 receptor expression in the striatum. In contrast, the 6-OHDA lesion caused a (modest) increase in 5-HT1B mRNA levels throughout the striatum. Moreover, repeated L-DOPA treatment markedly further elevated 5-HT1B expression in the dopamine-depleted striatum, an effect that was most robust in the sensorimotor striatum. A minor L-DOPA-induced increase in 5-HT1B expression was also seen in the intact striatum. These changes in 5-HT1B expression mimicked changes in the expression of neuropeptide markers (dynorphin, enkephalin mRNA) in striatal projection neurons. After repeated L-DOPA treatment, the severity of L-DOPA-induced dyskinesias and turning behavior was positively correlated with the increase in 5-HT1B expression in the associative, but not sensorimotor, striatum ipsilateral to the lesion, suggesting that associative striatal 5-HT1B receptors may play a role in L-DOPA-induced behavioral abnormalities.


Subject(s)
Corpus Striatum/metabolism , Dopamine/deficiency , Dyskinesia, Drug-Induced/metabolism , Levodopa/adverse effects , Receptor, Serotonin, 5-HT1B/metabolism , Animals , Behavior, Animal , Dynorphins/metabolism , Dyskinesia, Drug-Induced/genetics , Dyskinesia, Drug-Induced/pathology , Enkephalins/metabolism , Gene Expression Regulation , Male , Rats, Sprague-Dawley , Tyrosine 3-Monooxygenase/metabolism
11.
J Psychopharmacol ; 31(8): 1078-1087, 2017 08.
Article in English | MEDLINE | ID: mdl-28720013

ABSTRACT

Drug combinations that include a psychostimulant such as methylphenidate (Ritalin) and a selective serotonin reuptake inhibitor such as fluoxetine are indicated in several medical conditions. Co-exposure to these drugs also occurs with "cognitive enhancer" use by individuals treated with selective serotonin reuptake inhibitors. Methylphenidate, a dopamine reuptake inhibitor, by itself produces some addiction-related gene regulation in the striatum. We have demonstrated that co-administration of selective serotonin reuptake inhibitors potentiates these methylphenidate-induced molecular effects, thus producing a more "cocaine-like" profile. There is evidence that the 5-HT1B serotonin receptor subtype mediates some of the cocaine-induced gene regulation. We thus investigated whether the 5-HT1B receptor also modifies methylphenidate-induced gene regulation, by assessing effects of a selective 5-HT1B receptor agonist (CP94253) on immediate-early gene markers ( Zif268, c- Fos, Homer1a) in adolescent male rats. Gene expression was measured by in situ hybridization histochemistry. Our results show that CP94253 (3, 10 mg/kg) produced a dose-dependent potentiation of methylphenidate (5 mg/kg)-induced expression of Zif268 and c- Fos. This potentiation was widespread in the striatum and was maximal in lateral (sensorimotor) sectors, thus mimicking the effects seen after cocaine alone, or co-administration of fluoxetine. However, in contrast to fluoxetine, this 5-HT1B agonist did not influence methylphenidate-induced expression of Homer1a. CP94253 also potentiated methylphenidate-induced locomotor activity. These findings indicate that stimulation of the 5-HT1B receptor can enhance methylphenidate (dopamine)-induced gene regulation. This receptor may thus participate in the potentiation induced by fluoxetine (serotonin) and may serve as a pharmacological target to attenuate methylphenidate + selective serotonin reuptake inhibitor-induced "cocaine-like" effects.


Subject(s)
Corpus Striatum/drug effects , Gene Expression Regulation/drug effects , Genes, Immediate-Early/drug effects , Methylphenidate/pharmacology , Receptor, Serotonin, 5-HT1B/physiology , Animals , Corpus Striatum/metabolism , Dose-Response Relationship, Drug , Drug Synergism , Early Growth Response Protein 1/biosynthesis , Fluoxetine/pharmacology , Homer Scaffolding Proteins/biosynthesis , Locomotion/drug effects , Male , Proto-Oncogene Proteins c-fos/biosynthesis , Pyridines/pharmacology , Rats , Serotonin 5-HT1 Receptor Agonists/pharmacology
12.
Addict Biol ; 22(5): 1267-1278, 2017 Sep.
Article in English | MEDLINE | ID: mdl-27265728

ABSTRACT

Transcranial direct current stimulation (tDCS) is a non-invasive method to modulate cortical excitability. This technique is a promising emerging tool to treat several neuropathologies, including addiction. We have previously shown in mice that repeated tDCS normalizes pathological behaviors associated with chronic nicotine exposure. Here, we evaluated, in adult female mice, the impact of tDCS on cocaine-induced behavior and gene regulation in corticostriatal circuits implicated in psychostimulant addiction. Anodal tDCS was applied transcranially over the frontal cortex. Three weeks after repeated tDCS, we investigated the induction of a gene expression marker (Zif268) by cocaine (25 mg/kg) in 26 cortical and 23 striatal regions using in situ hybridization histochemistry. We also assessed place preference conditioning by cocaine (5, 10 and 25 mg/kg). tDCS pretreatment increased basal expression and attenuated cocaine (25 mg/kg)-induced expression of Zif268 in specific corticostriatal circuits. Cocaine-induced locomotor activation (25 mg/kg) and place preference conditioning (5 and 25 mg/kg) were also reduced. These results demonstrate that tDCS can attenuate molecular and behavioral responses to cocaine for several weeks. Together, our findings provide pre-clinical evidence that such electrical brain stimulation may be useful to modify the psychostimulant addiction risk.


Subject(s)
Behavior, Animal/drug effects , Cerebral Cortex/drug effects , Cocaine/pharmacology , Dopamine Uptake Inhibitors/pharmacology , Early Growth Response Protein 1/metabolism , Gene Expression/drug effects , Locomotion/drug effects , Neostriatum/drug effects , Transcranial Direct Current Stimulation , Animals , Cerebral Cortex/metabolism , Conditioning, Classical , Early Growth Response Protein 1/drug effects , Female , Frontal Lobe , Gene Expression/genetics , Mice , Neostriatum/metabolism , Neural Pathways/drug effects , Neural Pathways/metabolism
13.
Neuropharmacology ; 89: 77-86, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25218038

ABSTRACT

Drug combinations that include the psychostimulant methylphenidate plus a selective serotonin reuptake inhibitor (SSRI) such as fluoxetine are increasingly used in children and adolescents. For example, this combination is indicated in the treatment of attention-deficit/hyperactivity disorder and depression comorbidity and other mental disorders. Such co-exposure also occurs in patients on SSRIs who use methylphenidate as a cognitive enhancer. The neurobiological consequences of these drug combinations are poorly understood. Methylphenidate alone can produce gene regulation effects that mimic addiction-related gene regulation by cocaine, consistent with its moderate addiction liability. We have previously shown that combining SSRIs with methylphenidate potentiates methylphenidate-induced gene regulation in the striatum. The present study investigated which striatal output pathways are affected by the methylphenidate + fluoxetine combination, by assessing effects on pathway-specific neuropeptide markers, and which serotonin receptor subtypes may mediate these effects. Our results demonstrate that a 5-day repeated treatment with fluoxetine (5 mg/kg) potentiates methylphenidate (5 mg/kg)-induced expression of both dynorphin (direct pathway marker) and enkephalin (indirect pathway). These changes were accompanied by correlated increases in the expression of the 5-HT1B, but not 5-HT2C, serotonin receptor in the same striatal regions. A further study showed that the 5-HT1B receptor agonist CP94253 (3-10 mg/kg) mimics the fluoxetine potentiation of methylphenidate-induced gene regulation. These findings suggest a role for the 5-HT1B receptor in the fluoxetine effects on striatal gene regulation. Given that 5-HT1B receptors are known to facilitate addiction-related gene regulation and behavior, our results suggest that SSRIs may enhance the addiction liability of methylphenidate by increasing 5-HT1B receptor signaling.


Subject(s)
Corpus Striatum/physiology , Fluoxetine/administration & dosage , Methylphenidate/administration & dosage , Receptor, Serotonin, 5-HT1B/physiology , Animals , Corpus Striatum/drug effects , Drug Synergism , Gene Expression Regulation , Male , Neural Pathways/drug effects , Neural Pathways/physiology , Rats , Rats, Sprague-Dawley , Serotonin 5-HT1 Receptor Agonists/pharmacology
14.
Basal Ganglia ; 4(3-4): 109-116, 2014 Dec 01.
Article in English | MEDLINE | ID: mdl-25530939

ABSTRACT

Use of psychostimulants such as methylphenidate (Ritalin) in medical treatments and as cognitive enhancers in the healthy is increasing. Methylphenidate produces some addiction-related gene regulation in animal models. Recent findings show that combining selective serotonin reuptake inhibitor (SSRI) antidepressants such as fluoxetine with methylphenidate potentiates methylphenidate-induced gene regulation. We investigated the endurance of such abnormal gene regulation by assessing an established marker for altered gene regulation after drug treatments - blunting (repression) of immediate-early gene (IEG) inducibility - 14 days after repeated methylphenidate+fluoxetine treatment in adolescent rats. Thus, we measured the effects of a 6-day repeated treatment with methylphenidate (5 mg/kg), fluoxetine (5 mg/kg) or their combination on the inducibility (by cocaine) of neuroplasticity-related IEGs (Zif268, Homer1a) in the striatum, by in situ hybridization histochemistry. Repeated methylphenidate treatment alone produced modest gene blunting, while fluoxetine alone had no effect. In contrast, fluoxetine given in conjunction with methylphenidate produced pronounced potentiation of methylphenidate-induced blunting for both genes. This potentiation was seen in many functional domains of the striatum, but was most robust in the lateral, sensorimotor striatum. These enduring molecular changes were associated with potentiated induction of behavioral stereotypies in an open-field test. For illicit psychostimulants, blunting of gene expression is considered part of the molecular basis of addiction. Our results thus suggest that SSRIs such as fluoxetine may increase the addiction liability of methylphenidate. Key words: cognitive enhancer, dopamine, serotonin, gene expression, psychostimulant, SSRI antidepressant, striatum.

15.
Prog Brain Res ; 211: 13-30, 2014.
Article in English | MEDLINE | ID: mdl-24968775

ABSTRACT

Psychostimulants such as methylphenidate (MPH) and antidepressants such as fluoxetine (FLX) are widely used in the treatment of various mental disorders or as cognitive enhancers. These medications are often combined, for example, to treat comorbid disorders. There is a considerable body of evidence from animal models indicating that individually these psychotropic medications can have detrimental effects on the brain and behavior, especially when given during sensitive periods of brain development. However, almost no studies investigate possible interactions between these drugs. This is surprising given that their combined neurochemical effects (enhanced dopamine and serotonin neurotransmission) mimic some effects of illicit drugs such as cocaine and amphetamine. Here, we summarize recent studies in juvenile rats on the molecular effects in the mid- and forebrain and associated behavioral changes, after such combination treatments. Our findings indicate that these combined MPH+FLX treatments can produce similar molecular changes as seen after cocaine exposure while inducing behavioral changes indicative of dysregulated mood and motivation, effects that often endure into adulthood.


Subject(s)
Behavior, Animal/drug effects , Brain/drug effects , Psychotropic Drugs/adverse effects , Aging , Animals , Child , Disease Models, Animal , Fluoxetine/adverse effects , Humans , Methylphenidate/adverse effects
16.
Addict Biol ; 19(6): 986-95, 2014 Nov.
Article in English | MEDLINE | ID: mdl-23763573

ABSTRACT

There is a growing use of psychostimulants, such as methylphenidate (Ritalin; dopamine re-uptake inhibitor), for medical treatments and as cognitive enhancers in the healthy. Methylphenidate is known to produce some addiction-related gene regulation. Recent findings in animal models show that selective serotonin re-uptake inhibitors (SSRIs), including fluoxetine, can potentiate acute induction of gene expression by methylphenidate, thus indicating an acute facilitatory role for serotonin in dopamine-induced gene regulation. We investigated whether repeated exposure to fluoxetine, in conjunction with methylphenidate, in adolescent rats facilitated a gene regulation effect well established for repeated exposure to illicit psychostimulants such as cocaine-blunting (repression) of gene inducibility. We measured, by in situ hybridization histochemistry, the effects of a 5-day repeated treatment with methylphenidate (5 mg/kg), fluoxetine (5 mg/kg) or a combination on the inducibility (by cocaine) of neuroplasticity-related genes (Zif268, Homer1a) in the striatum. Repeated methylphenidate treatment alone produced minimal gene blunting, while fluoxetine alone had no effect. In contrast, fluoxetine added to methylphenidate robustly potentiated methylphenidate-induced blunting for both genes. This potentiation was widespread throughout the striatum, but was most robust in the lateral, sensorimotor striatum, thus mimicking cocaine effects. For illicit psychostimulants, blunting of gene expression is considered part of the molecular basis of addiction. Our results thus suggest that SSRIs, such as fluoxetine, may increase the addiction liability of methylphenidate.


Subject(s)
Cocaine/pharmacology , Dopamine Uptake Inhibitors/pharmacology , Fluoxetine/pharmacology , Methylphenidate/pharmacology , Selective Serotonin Reuptake Inhibitors/pharmacology , Animals , Carrier Proteins/genetics , Carrier Proteins/metabolism , Corpus Striatum/metabolism , Drug Combinations , Drug Synergism , Early Growth Response Protein 1/genetics , Early Growth Response Protein 1/metabolism , Homer Scaffolding Proteins , Male , Rats, Sprague-Dawley
17.
Mol Neurodegener ; 8: 47, 2013 Dec 26.
Article in English | MEDLINE | ID: mdl-24369067

ABSTRACT

BACKGROUND: The high affinity tyrosine kinase receptor, TrkB, is the primary receptor for brain derived neurotrophic factor (BDNF) and plays an important role in development, maintenance and plasticity of the striatal output medium size spiny neuron. The striatal BDNF/TrkB system is thereby implicated in many physiologic and pathophysiologic processes, the latter including mood disorders, addiction, and Huntington's disease. We crossed a mouse harboring a transgene directing cre-recombinase expression primarily to postnatal, dorsal striatal medium spiny neurons, to a mouse containing a floxed TrkB allele (fB) mouse designed for deletion of TrkB to determine its role in the adult striatum. RESULTS: We found that there were sexually dimorphic alterations in behaviors in response to stressful situations and drugs of abuse. Significant sex and/or genotype differences were found in the forced swim test of depression-like behaviors, anxiety-like behaviors on the elevated plus maze, and cocaine conditioned reward. Microarray analysis of dorsal striatum revealed significant dysregulation in individual and groups of genes that may contribute to the observed behavioral responses and in some cases, represent previously unidentified downstream targets of TrkB. CONCLUSIONS: The data point to a set of behaviors and changes in gene expression following postnatal deletion of TrkB in the dorsal striatum distinct from those in other brain regions.


Subject(s)
Behavior, Animal/physiology , Corpus Striatum/metabolism , Neurons/metabolism , Receptor, trkB/deficiency , Receptor, trkB/genetics , Aging , Animals , Blotting, Western , Female , Gene Knockdown Techniques , In Situ Hybridization , Male , Mice , Mice, Transgenic , Oligonucleotide Array Sequence Analysis , Signal Transduction/genetics , Transcriptome
19.
Prog Neurobiol ; 100: 60-80, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23085425

ABSTRACT

The psychostimulants methylphenidate (Ritalin, Concerta), amphetamine (Adderall), and modafinil (Provigil) are widely used in the treatment of medical conditions such as attention-deficit hyperactivity disorder and narcolepsy and, increasingly, as "cognitive enhancers" by healthy people. The long-term neuronal effects of these drugs, however, are poorly understood. A substantial amount of research over the past two decades has investigated the effects of psychostimulants such as cocaine and amphetamines on gene regulation in the brain because these molecular changes are considered critical for psychostimulant addiction. This work has determined in some detail the neurochemical and cellular mechanisms that mediate psychostimulant-induced gene regulation and has also identified the neuronal systems altered by these drugs. Among the most affected brain systems are corticostriatal circuits, which are part of cortico-basal ganglia-cortical loops that mediate motivated behavior. The neurotransmitters critical for such gene regulation are dopamine in interaction with glutamate, while other neurotransmitters (e.g., serotonin) play modulatory roles. This review presents (1) an overview of the main findings on cocaine- and amphetamine-induced gene regulation in corticostriatal circuits in an effort to provide a cellular framework for (2) an assessment of the molecular changes produced by methylphenidate, medical amphetamine (Adderall), and modafinil. The findings lead to the conclusion that protracted exposure to these cognitive enhancers can induce gene regulation effects in corticostriatal circuits that are qualitatively similar to those of cocaine and other amphetamines. These neuronal changes may contribute to the addiction liability of the psychostimulant cognitive enhancers.


Subject(s)
Behavior, Addictive , Central Nervous System Stimulants/pharmacology , Central Nervous System/drug effects , Gene Expression Regulation/drug effects , Nootropic Agents/pharmacology , Animals , Behavior, Addictive/drug therapy , Behavior, Addictive/genetics , Behavior, Addictive/metabolism , Central Nervous System/metabolism , Humans
20.
J Neurochem ; 122(5): 1054-64, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22738672

ABSTRACT

Concomitant therapies combining psychostimulants such as methylphenidate and selective serotonin reuptake inhibitors (SSRIs) are used to treat several mental disorders, including attention-deficit hyperactivity disorder/depression comorbidity. The neurobiological consequences of these drug combinations are poorly understood. Methylphenidate alone induces gene regulation that mimics partly effects of cocaine, consistent with some addiction liability. We previously showed that the SSRI fluoxetine potentiates methylphenidate-induced gene regulation in the striatum. The present study investigated which striatal output pathways are affected by the methylphenidate + fluoxetine combination, by assessing effects on pathway-specific neuropeptide markers. Results demonstrate that fluoxetine (5 mg/kg) potentiates methylphenidate (5 mg/kg)-induced expression of substance P and dynorphin, markers for direct pathway neurons. In contrast, no drug effects on the indirect pathway marker enkephalin were found. Because methylphenidate alone has minimal effects on dynorphin, the potentiation of dynorphin induction represents a more cocaine-like effect for the drug combination. On the other hand, the lack of an effect on enkephalin suggests a greater selectivity for the direct pathway compared with psychostimulants such as cocaine. Overall, the fluoxetine potentiation of gene regulation by methylphenidate occurs preferentially in sensorimotor striatal circuits, similar to other addictive psychostimulants. These results suggest that SSRIs may enhance the addiction liability of methylphenidate.


Subject(s)
Corpus Striatum/cytology , Fluoxetine/pharmacology , Gene Expression Regulation/drug effects , Neurons/drug effects , Neuropeptides/metabolism , Selective Serotonin Reuptake Inhibitors/pharmacology , Animals , Autoradiography , Central Nervous System Stimulants/pharmacology , Corpus Striatum/drug effects , Drug Synergism , Dynorphins/metabolism , Early Growth Response Protein 1/metabolism , Enkephalins/metabolism , Male , Methylphenidate/pharmacology , Neural Pathways/physiology , Neuropeptides/genetics , Proto-Oncogene Proteins c-fos/metabolism , Rats , Rats, Sprague-Dawley , Substance P , Substantia Nigra/cytology , Substantia Nigra/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...