Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
1.
Nat Commun ; 15(1): 3974, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38730230

ABSTRACT

Antibodies are engineerable quantities in medicine. Learning antibody molecular recognition would enable the in silico design of high affinity binders against nearly any proteinaceous surface. Yet, publicly available experiment antibody sequence-binding datasets may not contain the mutagenic, antigenic, or antibody sequence diversity necessary for deep learning approaches to capture molecular recognition. In part, this is because limited experimental platforms exist for assessing quantitative and simultaneous sequence-function relationships for multiple antibodies. Here we present MAGMA-seq, an integrated technology that combines multiple antigens and multiple antibodies and determines quantitative biophysical parameters using deep sequencing. We demonstrate MAGMA-seq on two pooled libraries comprising mutants of nine different human antibodies spanning light chain gene usage, CDR H3 length, and antigenic targets. We demonstrate the comprehensive mapping of potential antibody development pathways, sequence-binding relationships for multiple antibodies simultaneously, and identification of paratope sequence determinants for binding recognition for broadly neutralizing antibodies (bnAbs). MAGMA-seq enables rapid and scalable antibody engineering of multiple lead candidates because it can measure binding for mutants of many given parental antibodies in a single experiment.


Subject(s)
High-Throughput Nucleotide Sequencing , Immunoglobulin Fab Fragments , Mutation , Humans , Immunoglobulin Fab Fragments/genetics , Immunoglobulin Fab Fragments/chemistry , Immunoglobulin Fab Fragments/immunology , High-Throughput Nucleotide Sequencing/methods , Protein Engineering/methods , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/chemistry , Antibodies, Neutralizing/genetics , Complementarity Determining Regions/genetics , Complementarity Determining Regions/chemistry , Antibody Affinity , Antigens/immunology , Antigens/genetics
2.
Res Sq ; 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38559233

ABSTRACT

Objective: Our study develops a generative adversarial network (GAN)-based method that generates faithful synthetic image data of human cardiomyocytes at varying stages in their maturation process, as a tool to significantly enhance the classification accuracy of cells and ultimately assist the throughput of computational analysis of cellular structure and functions. Methods: Human induced pluripotent stem cell derived cardiomyocytes (hiPSC-CMs) were cultured on micropatterned collagen coated hydrogels of physiological stiffnesses to facilitate maturation and optical measurements were performed for their structural and functional analyses. Control groups were cultured on collagen coated glass well plates. These image recordings were used as the real data to train the GAN model. Results: The results show the GAN approach is able to replicate true features from the real data, and inclusion of such synthetic data significantly improves the classification accuracy compared to usage of only real experimental data that is often limited in scale and diversity. Conclusion: The proposed model outperformed four conventional machine learning algorithms with respect to improved data generalization ability and data classification accuracy by incorporating synthetic data. Significance: This work demonstrates the importance of integrating synthetic data in situations where there are limited sample sizes and thus, effectively addresses the challenges imposed by data availability.

3.
bioRxiv ; 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38293170

ABSTRACT

Antibodies are engineerable quantities in medicine. Learning antibody molecular recognition would enable the in silico design of high affinity binders against nearly any proteinaceous surface. Yet, publicly available experiment antibody sequence-binding datasets may not contain the mutagenic, antigenic, or antibody sequence diversity necessary for deep learning approaches to capture molecular recognition. In part, this is because limited experimental platforms exist for assessing quantitative and simultaneous sequence-function relationships for multiple antibodies. Here we present MAGMA-seq, an integrated technology that combines multiple antigens and multiple antibodies and determines quantitative biophysical parameters using deep sequencing. We demonstrate MAGMA-seq on two pooled libraries comprising mutants of ten different human antibodies spanning light chain gene usage, CDR H3 length, and antigenic targets. We demonstrate the comprehensive mapping of potential antibody development pathways, sequence-binding relationships for multiple antibodies simultaneously, and identification of paratope sequence determinants for binding recognition for broadly neutralizing antibodies (bnAbs). MAGMA-seq enables rapid and scalable antibody engineering of multiple lead candidates because it can measure binding for mutants of many given parental antibodies in a single experiment.

4.
Biotechnol Bioeng ; 120(10): 3057-3066, 2023 10.
Article in English | MEDLINE | ID: mdl-37366288

ABSTRACT

Construction of user-defined long circular single stranded DNA (cssDNA) and linear single stranded DNA (lssDNA) is important for various biotechnological applications. Many current methods for synthesis of these ssDNA molecules do not scale to multikilobase constructs. Here we present a robust methodology for generating user-defined cssDNA employing Golden Gate assembly, a nickase, and exonuclease degradation. Our technique is demonstrated for three plasmids with insert sizes ranging from 2.1 to 3.4 kb, requires no specialized equipment, and can be accomplished in 5 h with a yield of 33%-43% of the theoretical. To produce lssDNA, we evaluated different CRISPR-Cas9 cleavage conditions and reported a 52 ± 8% cleavage efficiency of cssDNA. Thus, our current method does not compete with existing protocols for lssDNA generation. Nevertheless, our protocol can make long, user-defined cssDNA readily available to biotechnology researchers.


Subject(s)
DNA, Single-Stranded , DNA , DNA, Single-Stranded/genetics , Plasmids/genetics , DNA/genetics , Biotechnology
5.
Biochemistry ; 62(2): 281-291, 2023 01 17.
Article in English | MEDLINE | ID: mdl-35675717

ABSTRACT

Chemical-induced dimerization (CID) modules enable users to implement ligand-controlled cellular and biochemical functions for a number of problems in basic and applied biology. A special class of CID modules occur naturally in plants and involve a hormone receptor that binds a hormone, triggering a conformational change in the receptor that enables recognition by a second binding protein. Two recent reports show that such hormone receptors can be engineered to sense dozens of structurally diverse compounds. As a closed form model for molecular ratchets would be of immense utility in forward engineering of biological systems, here we have developed a closed form model for these distinct CID modules. These modules, which we call molecular ratchets, are distinct from more common CID modules called molecular glues in that they engage in saturable binding kinetics and are characterized well by a Hill equation. A defining characteristic of molecular ratchets is that the sensitivity of the response can be tuned by increasing the molar ratio of the hormone receptor to the binding protein. Thus, the same molecular ratchet can have a pico- or micromolar EC50 depending on the concentration of the different receptor and binding proteins. Closed form models are derived for a base elementary reaction rate model, for ligand-independent complexation of the receptor and binding protein, and for homodimerization of the hormone receptor. Useful governing equations for a variety of in vitro and in vivo applications are derived, including enzyme-linked immunosorbent assay-like microplate assays, transcriptional activation in prokaryotes and eukaryotes, and ligand-induced split protein complementation.


Subject(s)
Carrier Proteins , Proteins , Dimerization , Ligands , Proteins/metabolism , Carrier Proteins/metabolism , Hormones
6.
Nat Biotechnol ; 40(12): 1855-1861, 2022 12.
Article in English | MEDLINE | ID: mdl-35726092

ABSTRACT

A general method to generate biosensors for user-defined molecules could provide detection tools for a wide range of biological applications. Here, we describe an approach for the rapid engineering of biosensors using PYR1 (Pyrabactin Resistance 1), a plant abscisic acid (ABA) receptor with a malleable ligand-binding pocket and a requirement for ligand-induced heterodimerization, which facilitates the construction of sense-response functions. We applied this platform to evolve 21 sensors with nanomolar to micromolar sensitivities for a range of small molecules, including structurally diverse natural and synthetic cannabinoids and several organophosphates. X-ray crystallography analysis revealed the mechanistic basis for new ligand recognition by an evolved cannabinoid receptor. We demonstrate that PYR1-derived receptors are readily ported to various ligand-responsive outputs, including enzyme-linked immunosorbent assay (ELISA)-like assays, luminescence by protein-fragment complementation and transcriptional circuits, all with picomolar to nanomolar sensitivity. PYR1 provides a scaffold for rapidly evolving new biosensors for diverse sense-response applications.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Biosensing Techniques , Plant Growth Regulators , Arabidopsis Proteins/genetics , Ligands , Plants
7.
Protein Eng Des Sel ; 352022 02 17.
Article in English | MEDLINE | ID: mdl-35325236

ABSTRACT

Stabilizing antigenic proteins as vaccine immunogens or diagnostic reagents is a stringent case of protein engineering and design as the exterior surface must maintain recognition by receptor(s) and antigen-specific antibodies at multiple distinct epitopes. This is a challenge, as stability enhancing mutations must be focused on the protein core, whereas successful computational stabilization algorithms typically select mutations at solvent-facing positions. In this study, we report the stabilization of SARS-CoV-2 Wuhan Hu-1 Spike receptor binding domain using a combination of deep mutational scanning and computational design, including the FuncLib algorithm. Our most successful design encodes I358F, Y365W, T430I, and I513L receptor binding domain mutations, maintains recognition by the receptor ACE2 and a panel of different anti-receptor binding domain monoclonal antibodies, is between 1 and 2°C more thermally stable than the original receptor binding domain using a thermal shift assay, and is less proteolytically sensitive to chymotrypsin and thermolysin than the original receptor binding domain. Our approach could be applied to the computational stabilization of a wide range of proteins without requiring detailed knowledge of active sites or binding epitopes. We envision that this strategy may be particularly powerful for cases when there are multiple or unknown binding sites.


Subject(s)
SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Binding Sites , Membrane Glycoproteins/metabolism , Mutation , Protein Domains , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics
8.
Ann Biomed Eng ; 50(2): 111-137, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35039976

ABSTRACT

Organ-on-chip or micro-engineered three-dimensional cellular or tissue models are increasingly implemented in the study of cardiovascular pathophysiology as alternatives to traditional in vitro cell culture. Drug induced cardiotoxicity is a key issue in drug development pipelines, but the current in vitro and in vivo studies suffer from inter-species differences, high costs, and lack of reliability and accuracy in predicting cardiotoxicity. Microfluidic heart-on-chip devices can impose a paradigm shift to the current tools. They can not only recapitulate cardiac tissue level functionality and the communication between cells and extracellular matrices but also allow higher throughput studies conducive to drug screening especially with their added functionalities or sensors that extract disease-specific phenotypic, genotypic, and electrophysiological information in real-time. Such electrical and mechanical components can tailor the electrophysiology and mechanobiology of the experiment to better mimic the in vivo condition as well. Recent advancements and challenges are reviewed in the fabrication, functionalization and sensor assisted mechanical and electrophysiological measurements, numerical and computational modeling of cardiomyocytes' behavior, and the clinical applications in drug screening and disease modeling. This review concludes with the current challenges and perspectives on the future of such organ-on-chip platforms.


Subject(s)
Biomimetics/methods , Computer Simulation , Drug Evaluation, Preclinical/methods , Lab-On-A-Chip Devices , Microfluidics/methods , Humans , Myocytes, Cardiac/drug effects
9.
bioRxiv ; 2021 Nov 24.
Article in English | MEDLINE | ID: mdl-34845448

ABSTRACT

Stabilizing antigenic proteins as vaccine immunogens or diagnostic reagents is a stringent case of protein engineering and design as the exterior surface must maintain recognition by receptor(s) and antigen-specific antibodies at multiple distinct epitopes. This is a challenge, as stability-enhancing mutations must be focused on the protein core, whereas successful computational stabilization algorithms typically select mutations at solvent-facing positions. In this study we report the stabilization of SARS-CoV-2 Wuhan Hu-1 Spike receptor binding domain (S RBD) using a combination of deep mutational scanning and computational design, including the FuncLib algorithm. Our most successful design encodes I358F, Y365W, T430I, and I513L RBD mutations, maintains recognition by the receptor ACE2 and a panel of different anti-RBD monoclonal antibodies, is between 1-2°C more thermally stable than the original RBD using a thermal shift assay, and is less proteolytically sensitive to chymotrypsin and thermolysin than the original RBD. Our approach could be applied to the computational stabilization of a wide range of proteins without requiring detailed knowledge of active sites or binding epitopes, particularly powerful for cases when there are multiple or unknown binding sites.

10.
STAR Protoc ; 2(4): 100869, 2021 12 17.
Article in English | MEDLINE | ID: mdl-34568839

ABSTRACT

Here, we describe a protocol to identify escape mutants on the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike (S) receptor-binding domain (RBD) using a yeast screen combined with deep mutational scanning. Over 90% of all potential single S RBD escape mutants can be identified for monoclonal antibodies that directly compete with angiotensin-converting enzyme 2 for binding. Six to 10 antibodies can be assessed in parallel. This approach has been shown to determine escape mutants that are consistent with more laborious SARS-CoV-2 pseudoneutralization assays. For complete details on the use and execution of this protocol, please refer to Francino-Urdaniz et al. (2021).


Subject(s)
Angiotensin-Converting Enzyme 2/genetics , COVID-19/genetics , DNA Mutational Analysis/methods , Mutation , SARS-CoV-2/genetics , Saccharomyces cerevisiae/metabolism , Spike Glycoprotein, Coronavirus/genetics , Angiotensin-Converting Enzyme 2/metabolism , Binding Sites , COVID-19/metabolism , COVID-19/virology , Humans , Saccharomyces cerevisiae/genetics , Spike Glycoprotein, Coronavirus/metabolism
11.
Cell Rep ; 37(1): 109771, 2021 10 05.
Article in English | MEDLINE | ID: mdl-34587480

ABSTRACT

Understanding mechanisms of protective antibody recognition can inform vaccine and therapeutic strategies against SARS-CoV-2. We report a monoclonal antibody, 910-30, targeting the SARS-CoV-2 receptor-binding site for ACE2 as a member of a public antibody response encoded by IGHV3-53/IGHV3-66 genes. Sequence and structural analyses of 910-30 and related antibodies explore how class recognition features correlate with SARS-CoV-2 neutralization. Cryo-EM structures of 910-30 bound to the SARS-CoV-2 spike trimer reveal binding interactions and its ability to disassemble spike. Despite heavy-chain sequence similarity, biophysical analyses of IGHV3-53/3-66-encoded antibodies highlight the importance of native heavy:light pairings for ACE2-binding competition and SARS-CoV-2 neutralization. We develop paired heavy:light class sequence signatures and determine antibody precursor prevalence to be ∼1 in 44,000 human B cells, consistent with public antibody identification in several convalescent COVID-19 patients. These class signatures reveal genetic, structural, and functional immune features that are helpful in accelerating antibody-based medical interventions for SARS-CoV-2.


Subject(s)
Angiotensin-Converting Enzyme 2/immunology , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/immunology , COVID-19/immunology , COVID-19/virology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Aged , Angiotensin-Converting Enzyme 2/chemistry , Animals , Antibodies, Monoclonal/genetics , Antibodies, Monoclonal/ultrastructure , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Antibody Formation , B-Lymphocytes/immunology , Binding Sites , Chlorocebus aethiops , Cryoelectron Microscopy , HEK293 Cells , Humans , Immunoglobulin Heavy Chains/chemistry , Immunoglobulin Heavy Chains/genetics , Immunoglobulin Heavy Chains/immunology , Immunoglobulin Heavy Chains/ultrastructure , Immunoglobulin Light Chains/chemistry , Immunoglobulin Light Chains/genetics , Immunoglobulin Light Chains/immunology , Immunoglobulin Light Chains/ultrastructure , Male , Protein Binding , Protein Interaction Domains and Motifs , SARS-CoV-2/chemistry , Spike Glycoprotein, Coronavirus/chemistry , Vero Cells
12.
Cell Rep ; 36(9): 109627, 2021 08 31.
Article in English | MEDLINE | ID: mdl-34416153

ABSTRACT

The potential emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike (S) escape mutants is a threat to the efficacy of existing vaccines and neutralizing antibody (nAb) therapies. An understanding of the antibody/S escape mutation landscape is urgently needed to preemptively address this threat. Here we describe a rapid method to identify escape mutants for nAbs targeting the S receptor binding site. We identified escape mutants for five nAbs, including three from the public germline class VH3-53 elicited by natural coronavirus disease 2019 (COVID-19) infection. Escape mutations predominantly mapped to the periphery of the angiotensin-converting enzyme 2 (ACE2) recognition site on the RBD with K417, D420, Y421, F486, and Q493 as notable hotspots. We provide libraries, methods, and software as an openly available community resource to accelerate new therapeutic strategies against SARS-CoV-2.

13.
bioRxiv ; 2021 Mar 15.
Article in English | MEDLINE | ID: mdl-33758848

ABSTRACT

The potential emergence of SARS-CoV-2 Spike (S) escape mutants is a threat to reduce the efficacy of existing vaccines and neutralizing antibody (nAb) therapies. An understanding of the antibody/S escape mutations landscape is urgently needed to preemptively address this threat. Here we describe a rapid method to identify escape mutants for nAbs targeting the S receptor binding site. We identified escape mutants for five nAbs, including three from the public germline class VH3-53 elicited by natural COVID-19 infection. Escape mutations predominantly mapped to the periphery of the ACE2 recognition site on the RBD with K417, D420, Y421, F486, and Q493 as notable hotspots. We provide libraries, methods, and software as an openly available community resource to accelerate new therapeutic strategies against SARS-CoV-2.

14.
bioRxiv ; 2021 Jan 03.
Article in English | MEDLINE | ID: mdl-33442681

ABSTRACT

Understanding protective mechanisms of antibody recognition can inform vaccine and therapeutic strategies against SARS-CoV-2. We discovered a new antibody, 910-30, that targets the SARS-CoV-2 ACE2 receptor binding site as a member of a public antibody response encoded by IGHV3-53/IGHV3-66 genes. We performed sequence and structural analyses to explore how antibody features correlate with SARS-CoV-2 neutralization. Cryo-EM structures of 910-30 bound to the SARS-CoV-2 spike trimer revealed its binding interactions and ability to disassemble spike. Despite heavy chain sequence similarity, biophysical analyses of IGHV3-53/3-66 antibodies highlighted the importance of native heavy:light pairings for ACE2 binding competition and for SARS-CoV-2 neutralization. We defined paired heavy:light sequence signatures and determined antibody precursor prevalence to be ~1 in 44,000 human B cells, consistent with public antibody identification in several convalescent COVID-19 patients. These data reveal key structural and functional neutralization features in the IGHV3-53/3-66 public antibody class to accelerate antibody-based medical interventions against SARS-CoV-2. HIGHLIGHTS: A molecular study of IGHV3-53/3-66 public antibody responses reveals critical heavy and light chain features for potent neutralizationCryo-EM analyses detail the structure of a novel public antibody class member, antibody 910-30, in complex with SARS-CoV-2 spike trimerCryo-EM data reveal that 910-30 can both bind assembled trimer and can disassemble the SARS-CoV-2 spikeSequence-structure-function signatures defined for IGHV3-53/3-66 class antibodies including both heavy and light chainsIGHV3-53/3-66 class precursors have a prevalence of 1:44,000 B cells in healthy human antibody repertoires.

15.
Front Microbiol ; 11: 584222, 2020.
Article in English | MEDLINE | ID: mdl-33304331

ABSTRACT

Marine snow is an important habitat for microbes, characterized by chemical and physical properties contrasting those of the ambient water. The higher nutrient concentrations in marine snow lead to compositional differences between the ambient water and the marine snow-associated prokaryotic community. Whether these compositional differences vary due to seasonal environmental changes, however, remains unclear. Thus, we investigated the seasonal patterns of the free-living and marine snow-associated microbial community composition and their functional potential in the northern Adriatic Sea. Our data revealed seasonal patterns in both, the free-living and marine snow-associated prokaryotes. The two assemblages were more similar to each other in spring and fall than in winter and summer. The taxonomic distinctness resulted in a contrasting functional potential. Motility and adaptations to low temperature in winter and partly anaerobic metabolism in summer characterized the marine snow-associated prokaryotes. Free-living prokaryotes were enriched in genes indicative for functions related to phosphorus limitation in winter and in genes tentatively supplementing heterotrophic growth with proteorhodopsins and CO-oxidation in summer. Taken together, the results suggest a strong influence of environmental parameters on both free-living and marine snow-associated prokaryotic communities in spring and fall leading to higher similarity between the communities, while the marine snow habitat in winter and summer leads to a specific prokaryotic community in marine snow in these two seasons.

16.
Bio Protoc ; 10(15): e3697, 2020 Aug 05.
Article in English | MEDLINE | ID: mdl-33659364

ABSTRACT

Saturation mutagenesis is a fundamental enabling technology for protein engineering and epitope mapping. Nicking mutagenesis (NM) allows the user to rapidly construct libraries of all possible single mutations in a target protein sequence from plasmid DNA in a one-pot procedure. Briefly, one strand of the plasmid DNA is degraded using a nicking restriction endonuclease and exonuclease treatment. Mutagenic primers encoding the desired mutations are annealed to the resulting circular single-stranded DNA, extended with high-fidelity polymerase, and ligated into covalently closed circular DNA by Taq DNA ligase. The heteroduplex DNA is resolved by selective degradation of the template strand. The complementary strand is synthesized and ligated, resulting in a library of mutated covalently closed circular plasmids. It was later shown that because very little primer is used in the procedure, resuspended oligo pools, which normally require amplification before use, can be used directly in the mutagenesis procedure. Because oligo pools can contain tens of thousands of unique oligos, this enables the construction of libraries of tens of thousands of user-defined mutations in a single-pot mutagenesis reaction, which significantly improves the utility of NM as described below. Use of oligo pools afford an economically advantageous approach to mutagenic experiments. First, oligo pool synthesis is much less expensive per nucleotide synthesized than conventional synthesis. Second, a mixed pool may be generated and used for mutagenesis of multiple different genes. To use the same oligo-pool for mutagenesis of a variety of genes, the user must only quantify the fraction of the oligo-pool specific to her mutagenic experiment and adjust the volume and effective concentration of the oligo-pool for use in nicking mutagenesis.

17.
Mol Biol Evol ; 36(12): 2764-2777, 2019 12 01.
Article in English | MEDLINE | ID: mdl-31400199

ABSTRACT

It is incompletely understood how biophysical properties like protein stability impact molecular evolution and epistasis. Epistasis is defined as specific when a mutation exclusively influences the phenotypic effect of another mutation, often at physically interacting residues. In contrast, nonspecific epistasis results when a mutation is influenced by a large number of nonlocal mutations. As most mutations are pleiotropic, the in vivo folding probability-governed by basal protein stability-is thought to determine activity-enhancing mutational tolerance, implying that nonspecific epistasis is dominant. However, evidence exists for both specific and nonspecific epistasis as the prevalent factor, with limited comprehensive data sets to support either claim. Here, we use deep mutational scanning to probe how in vivo enzyme folding probability impacts local fitness landscapes. We computationally designed two different variants of the amidase AmiE with statistically indistinguishable catalytic efficiencies but lower probabilities of folding in vivo compared with wild-type. Local fitness landscapes show slight alterations among variants, with essentially the same global distribution of fitness effects. However, specific epistasis was predominant for the subset of mutations exhibiting positive sign epistasis. These mutations mapped to spatially distinct locations on AmiE near the initial mutation or proximal to the active site. Intriguingly, the majority of specific epistatic mutations were codon dependent, with different synonymous codons resulting in fitness sign reversals. Together, these results offer a nuanced view of how protein folding probability impacts local fitness landscapes and suggest that transcriptional-translational effects are as important as stability in determining evolutionary outcomes.


Subject(s)
Amidohydrolases/metabolism , Genetic Fitness , Models, Biological , Mutation , Protein Folding , Amidohydrolases/genetics
18.
Protein Eng Des Sel ; 32(1): 41-45, 2019 09 10.
Article in English | MEDLINE | ID: mdl-31297523

ABSTRACT

User-defined mutagenic libraries are fundamental for applied protein engineering workflows. Here we show that unamplified oligo pools can be used to prepare site saturation mutagenesis libraries from plasmid DNA with near-complete coverage of desired mutations and few off-target mutations. We find that oligo pools yield higher quality libraries when compared to individually synthesized degenerate oligos. We also show that multiple libraries can be multiplexed into a single oligo pool, making preparation of multiple libraries less expensive and more convenient. We provide software for automatic oligo pool design that can generate mutagenic oligos for saturating or focused libraries.


Subject(s)
Gene Library , Mutagenesis, Site-Directed/methods , Oligodeoxyribonucleotides , Protein Engineering/methods , Oligodeoxyribonucleotides/chemical synthesis , Oligodeoxyribonucleotides/chemistry , Oligodeoxyribonucleotides/genetics , Plasmids/chemistry , Plasmids/genetics
19.
Environ Microbiol ; 21(10): 3873-3884, 2019 10.
Article in English | MEDLINE | ID: mdl-31298776

ABSTRACT

Messenger RNA can provide valuable insights into the variability of metabolic processes of microorganisms. However, due to uncertainties that include the stability of RNA, its application for activity profiling of environmental samples is questionable. We explored different factors affecting the decay rate of transcripts of three marine bacterial isolates using qPCR and determined mRNA half-life time of specific bacterial taxa and of functional genes by metatranscriptomics of a coastal environmental prokaryotic community. The half-life time of transcripts from 11 genes from bacterial isolates ranged from 1 to 46 min. About 80% of the analysed transcripts exhibited half-live times shorter than 10 min. Significant differences were found in the half-life time between mRNA and rRNA. The half-life time of mRNA obtained from a coastal metatranscriptome ranged from 9 to 400 min. The shortest half-life times of the metatranscriptome corresponded to transcripts from the same clusters of orthologous groups (COGs) in all bacterial classes. The prevalence of short mRNA half-life time in genes related to defence mechanisms and motility indicate a tight connection of RNA decay rate to environmental stressors. The short half-life time of RNA and its high variability needs to be considered when assessing metatranscriptomes especially in environmental samples.


Subject(s)
Bacteria/genetics , RNA Stability/physiology , RNA, Messenger/genetics , Aquatic Organisms/classification , Aquatic Organisms/genetics , Bacteria/isolation & purification , Bacteria/metabolism , Half-Life , RNA, Ribosomal/genetics , Transcriptome/genetics
20.
Environ Microbiol Rep ; 11(5): 699-707, 2019 10.
Article in English | MEDLINE | ID: mdl-31286686

ABSTRACT

The extent of DMSP demethylation has been hypothesized to depend on DMSP availability and bacterial sulfur demand, which might lead to niche differentiation of the demethylating bacterial community. In this study, we determined DMSP concentrations in marine snow and the ambient water over a seasonal cycle and linked DMSP concentrations to the abundance of bacteria harbouring the demethylation dmdA gene in the Adriatic Sea. In marine snow, DMSP concentrations were up to four times higher than in the ambient water and three times higher in marine snow in summer than in winter. The average dmdA:recA gene ratio over the sampling period was 0.40 ± 0.24 in marine snow and 0.48 ± 0.21 in the ambient water. However, at the subclade level, differences in the demethylating bacterial community of marine snow and the ambient water were apparent. Seasonal patterns of potentially demethylating bacteria were best visible at the oligotype level. In the ambient water, the SAR116 and the OM60/NOR5 clade were composed of oligotypes that correlated to high DMSP concentrations, while oligotypes of the Rhodospirillales correlated to low DMSP concentrations. Our results revealed a pronounced seasonal variability and spatial heterogeneity in DMSP concentrations and the associated demethylating bacterial community.


Subject(s)
Bacteria/classification , Demethylation , Geologic Sediments/microbiology , Microbial Consortia , Seasons , Seawater/microbiology , DNA, Bacterial/genetics , Gammaproteobacteria , Oceans and Seas , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...