Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters











Publication year range
1.
Cell Commun Signal ; 22(1): 424, 2024 Sep 02.
Article in English | MEDLINE | ID: mdl-39223663

ABSTRACT

BACKGROUND: Acute myeloid leukemia (AML) is characterized by the abnormal proliferation of myeloid precursor cells and presents significant challenges in treatment due to its heterogeneity. Recently, the NLRP3 inflammasome has emerged as a potential contributor to AML pathogenesis, although its precise mechanisms remain poorly understood. METHODS: Public genome datasets were utilized to evaluate the expression of NLRP3 inflammasome-related genes (IL-1ß, IL-18, ASC, and NLRP3) in AML patients compared to healthy individuals. CRISPR/Cas9 technology was employed to generate NLRP3-deficient MOLM-13 AML cells, followed by comprehensive characterization using real-time PCR, western blotting, FACS analysis, and transmission electron and immunofluorescence microscopy. Proteomic analyses were conducted to identify NLRP3-dependent alterations in protein levels, with a focus on the eIF2 kinase PERK-mediated signaling pathways. Additionally, in vivo studies were performed using a leukemic mouse model to elucidate the pathogenic role of NLRP3 in AML. RESULTS: Elevated expression of NLRP3 was significantly associated with diminished overall survival in AML patients. Genetic deletion, pharmacological inhibition and silencing by RNA interference of NLRP3 led to decreased AML cell survival through the induction of apoptosis. Proteomic analyses uncovered NLRP3-dependent alterations in protein translation, characterized by enhanced eIF2α phosphorylation in NLRP3-deficient AML cells. Moreover, inhibition of PERK-mediated eIF2α phosphorylation reduced apoptosis by downregulating pro-apoptotic Bcl-2 family members. In vivo studies demonstrated reduced leukemic burden in mice engrafted with NLRP3 knockout AML cells, as evidenced by alleviated leukemic symptoms. CONCLUSION: Our findings elucidate the involvement of the NLRP3/PERK/eIF2 axis as a novel driver of AML cell survival. Targeting NLRP3-induced signaling pathways, particularly through the PERK/eIF2 axis, presents a promising therapeutic strategy for AML intervention. These insights into the role of the NLRP3 inflammasome offer potential avenues for improving the prognosis and treatment outcomes of AML patients.


Subject(s)
Apoptosis , Eukaryotic Initiation Factor-2 , Leukemia, Myeloid, Acute , NLR Family, Pyrin Domain-Containing 3 Protein , eIF-2 Kinase , Leukemia, Myeloid, Acute/pathology , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Humans , Apoptosis/genetics , Animals , Eukaryotic Initiation Factor-2/metabolism , Eukaryotic Initiation Factor-2/genetics , Mice , eIF-2 Kinase/metabolism , eIF-2 Kinase/genetics , Signal Transduction , Cell Line, Tumor , Disease Progression , Inflammasomes/metabolism
2.
Handb Exp Pharmacol ; 278: 71-92, 2023.
Article in English | MEDLINE | ID: mdl-36639434

ABSTRACT

Two-pore channels (TPCs) are novel intracellular cation channels, which play a key role in numerous (patho-)physiological and immunological processes. In this chapter, we focus on their function in immune cells and immune reactions. Therefore, we first give an overview of the cellular immune response and the partaking immune cells. Second, we concentrate on ion channels which in the past have been shown to play an important role in the regulation of immune cells. The main focus is then directed to TPCs, which are primarily located in the membranes of acidic organelles, such as lysosomes or endolysosomes but also certain other vesicles. They regulate Ca2+ homeostasis and thus Ca2+ signaling in immune cells. Due to this important functional role, TPCs are enjoying increasing attention within the field of immunology in the last few decades but are also becoming more pertinent as pharmacological targets for the treatment of pro-inflammatory diseases such as allergic hypersensitivity. However, to uncover the precise molecular mechanism of TPCs in immune cell responses, further molecular, genetic, and ultrastructural investigations on TPCs are necessary, which then may pave the way to develop novel therapeutic strategies to treat diseases such as anaphylaxis more specifically.


Subject(s)
Calcium Channels , Lysosomes , Humans , Calcium Channels/metabolism , Lysosomes/genetics , Lysosomes/metabolism , Immune System/metabolism , Endosomes/metabolism , Calcium/metabolism , Calcium Signaling
3.
Cells ; 11(9)2022 04 26.
Article in English | MEDLINE | ID: mdl-35563771

ABSTRACT

Two-pore channels (TPCs) are ligand-gated cation-selective ion channels that are preserved in plant and animal cells. In the latter, TPCs are located in membranes of acidic organelles, such as endosomes, lysosomes, and endolysosomes. Here, we focus on the function of these unique ion channels in mast cells, which are leukocytes that mature from myeloid hematopoietic stem cells. The cytoplasm of these innate immune cells contains a large number of granules that comprise messenger substances, such as histamine and heparin. Mast cells, along with basophil granulocytes, play an essential role in anaphylaxis and allergic reactions by releasing inflammatory mediators. Signaling in mast cells is mainly regulated via the release of Ca2+ from the endoplasmic reticulum as well as from acidic compartments, such as endolysosomes. For the crosstalk of these organelles TPCs seem essential. Allergic reactions and anaphylaxis were previously shown to be associated with the endolysosomal two-pore channel TPC1. The release of histamine, controlled by intracellular Ca2+ signals, was increased upon genetic or pharmacologic TPC1 inhibition. Conversely, stimulation of TPC channel activity by one of its endogenous ligands, namely nicotinic adenine dinucleotide phosphate (NAADP) or phosphatidylinositol 3,5-bisphosphate (PI(3,5)P2), were found to trigger the release of Ca2+ from the endolysosomes; thereby improving the effect of TPC1 on regulated mast cell degranulation. In this review we discuss the importance of TPC1 for regulating Ca2+ homeostasis in mast cells and the overall potential of TPC1 as a pharmacological target in anti-inflammatory therapy.


Subject(s)
Anaphylaxis , Calcium Channels , Animals , Calcium/metabolism , Calcium Channels/genetics , Endosomes/metabolism , Histamine , Homeostasis , NADP/metabolism
4.
Protoplasma ; 258(6): 1335-1346, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34304308

ABSTRACT

Peat bog pools around Tamsweg (Lungau, Austria) are typical habitats of the unicellular green alga Micrasterias denticulata. By measurement of water temperature and irradiation throughout a 1-year period (2018/2019), it was intended to assess the natural environmental strain in winter. Freezing resistance of Micrasterias cells and their ability to frost harden and become tolerant to ice encasement were determined after natural hardening and exposure to a cold acclimation treatment that simulated the natural temperature decrease in autumn. Transmission electron microscopy (TEM) was performed in laboratory-cultivated cells, after artificial cold acclimation treatment and in cells collected from field. Throughout winter, the peat bog pools inhabited by Micrasterias remained unfrozen. Despite air temperature minima down to -17.3 °C, the water temperature was mostly close to +0.8 °C. The alga was unable to frost harden, and upon ice encasement, the cells showed successive frost damage. Despite an unchanged freezing stress tolerance, significant ultrastructural changes were observed in field-sampled cells and in response to the artificial cold acclimation treatment: organelles such as the endoplasmic reticulum and thylakoids of the chloroplast showed distinct membrane bloating. Still, in the field samples, the Golgi apparatus appeared in an impeccable condition, and multivesicular bodies were less frequently observed suggesting a lower overall stress strain. The observed ultrastructural changes in winter and after cold acclimation are interpreted as cytological adjustments to winter or a resting state but are not related to frost hardening as Micrasterias cells were unable to improve their freezing stress tolerance.


Subject(s)
Chlorophyta , Micrasterias , Cold Temperature , Ecosystem , Freezing , Seasons
5.
Nanoscale ; 13(16): 7648-7666, 2021 Apr 30.
Article in English | MEDLINE | ID: mdl-33928963

ABSTRACT

Dendritic cells (DCs) shape immune responses by influencing T-cell activation. Thus, they are considered both an interesting model for studying nano-immune interactions and a promising target for nano-based biomedical applications. However, the accentuated ability of nanoparticles (NPs) to interact with biomolecules may have an impact on DC function that poses an unexpected risk of unbalanced immune reactions. Here, we investigated the potential effects of gold nanoparticles (AuNPs) on DC function and the consequences for effector and memory T-cell responses in the presence of the microbial inflammatory stimulus lipopolysaccharide (LPS). Overall, we found that, in the absence of LPS, none of the tested NPs induced a DC response. However, whereas 4-, 8-, and 11 nm AuNPs did not modulate LPS-dependent immune responses, 26 nm AuNPs shifted the phenotype of LPS-activated DCs toward a tolerogenic state, characterized by downregulation of CD86, IL-12 and IL-27, upregulation of ILT3, and induction of class E compartments. Moreover, this DC phenotype was less proficient in promoting Th1 activation and central memory T-cell proliferation. Taken together, these findings support the perception that AuNPs are safe under homeostatic conditions; however, particular care should be taken in patients experiencing a current infection or disorders of the immune system.


Subject(s)
Gold , Metal Nanoparticles , Dendritic Cells , Humans , Lipopolysaccharides , Metal Nanoparticles/toxicity , Phenotype
6.
Int J Mol Sci ; 21(22)2020 Nov 19.
Article in English | MEDLINE | ID: mdl-33228190

ABSTRACT

Low temperature stress has a severe impact on the distribution, physiology, and survival of plants in their natural habitats. While numerous studies have focused on the physiological and molecular adjustments to low temperatures, this study provides evidence that cold induced physiological responses coincide with distinct ultrastructural alterations. Three plants from different evolutionary levels and habitats were investigated: The freshwater alga Micrasterias denticulata, the aquatic plant Lemna sp., and the nival plant Ranunculus glacialis. Ultrastructural alterations during low temperature stress were determined by the employment of 2-D transmission electron microscopy and 3-D reconstructions from focused ion beam-scanning electron microscopic series. With decreasing temperatures, increasing numbers of organelle contacts and particularly the fusion of mitochondria to 3-dimensional networks were observed. We assume that the increase or at least maintenance of respiration during low temperature stress is likely to be based on these mitochondrial interconnections. Moreover, it is shown that autophagy and degeneration processes accompany freezing stress in Lemna and R. glacialis. This might be an essential mechanism to recycle damaged cytoplasmic constituents to maintain the cellular metabolism during freezing stress.


Subject(s)
Araceae/physiology , Autophagy/physiology , Chloroplasts/physiology , Micrasterias/physiology , Mitochondria/physiology , Ranunculus/physiology , Aquatic Organisms , Araceae/ultrastructure , Cell Respiration/physiology , Chloroplasts/ultrastructure , Cold Temperature , Cold-Shock Response , Endoplasmic Reticulum/physiology , Endoplasmic Reticulum/ultrastructure , Micrasterias/ultrastructure , Microscopy, Electron, Transmission , Mitochondria/ultrastructure , Peroxisomes/physiology , Peroxisomes/ultrastructure , Photosynthesis/physiology , Plant Cells/physiology , Plant Cells/ultrastructure , Ranunculus/ultrastructure
7.
Front Plant Sci ; 11: 873, 2020.
Article in English | MEDLINE | ID: mdl-32714344

ABSTRACT

Adaptation strategies in freezing resistance were investigated in Klebsormidium crenulatum, an early branching streptophyte green alga related to higher plants. Klebsormidium grows naturally in unfavorable environments like alpine biological soil crusts, exposed to desiccation, high irradiation and cold stress. Here, chilling and freezing induced alterations of the ultrastructure were investigated. Control samples (kept at 20°C) were compared to chilled (4°C) as well as extracellularly frozen algae (-2 and -4°C). A software-controlled laboratory freezer (AFU, automatic freezing unit) was used for algal exposure to various temperatures and freezing was manually induced. Samples were then high pressure frozen and cryo-substituted for electron microscopy. Control cells had a similar appearance in size and ultrastructure as previously reported. While chilling stressed algae only showed minor ultrastructural alterations, such as small inward facing cell wall plugs and minor alterations of organelles, drastic changes of the cell wall and in organelle distribution were found in extracellularly frozen samples (-2°C and -4°C). In frozen samples, the cytoplasm was not retracted from the cell wall, but extensive three-dimensional cell wall layers were formed, most prominently in the corners of the cells, as determined by FIB-SEM and TEM tomography. Similar alterations/adaptations of the cell wall were not reported or visualized in Klebsormidium before, neither in controls, nor during other stress scenarios. This indicates that the cell wall is reinforced by these additional wall layers during freezing stress. Cells allowed to recover from freezing stress (-2°C) for 5 h at 20°C lost these additional cell wall layers, suggesting their dynamic formation. The composition of these cell wall reinforcement areas was investigated by immuno-TEM. In addition, alterations of structure and distribution of mitochondria, dictyosomes and a drastically increased endoplasmic reticulum were observed in frozen cells by TEM and TEM tomography. Measurements of the photosynthetic oxygen production showed an acclimation of Klebsormidium to chilling stress, which correlates with our findings on ultrastructural alterations of morphology and distribution of organelles. The cell wall reinforcement areas, together with the observed changes in organelle structure and distribution, are likely to contribute to maintenance of an undisturbed cell physiology and to adaptation to chilling and freezing stress.

8.
Plant Methods ; 16: 48, 2020.
Article in English | MEDLINE | ID: mdl-32280364

ABSTRACT

BACKGROUND: Many methodological approaches have focused so far on physiological and molecular responses of plant tissues to freezing but only little knowledge is available on the consequences of extracellular ice-formation on cellular ultrastructure that underlies physiological reactions. In this context, the preservation of a defined frozen state during the entire fixation procedure is an essential prerequisite. However, current techniques are not able to fix frozen plant tissues for transmission electron microscopy (TEM) without interrupting the cold chain. Chemical fixation by glutaraldehyde and osmium tetroxide is not possible at sub-zero temperatures. Cryo-fixation methods, such as high pressure freeze fixation (HPF) representing the state-of-the-art technique for best structural preservation, are not equipped for freezing frozen samples. In order to overcome this obstacle, a novel technical approach for maintaining the cold chain of already frozen plant samples prior and during HPF is presented. RESULTS: Different algae (Micrasterias denticulata, Klebsormidium crenulatum) and higher plant tissues (Lemna sp., Ranunculus glacialis, Pinus mugo) were successfully frozen and prepared for HPF at freezing temperatures (- 2 °C, - 5 °C, - 6 °C) within a newly developed automatic freezing unit (AFU), that we manufactured from a standard laboratory freezer. Preceding tests on photosynthetic electron transport and ability to plasmolyse show that the temperatures applied did not impair electron transport in PSII nor cell vitality. The transfer of the frozen specimen from the AFU into the HPF-device and subsequently cryo-fixation were performed without intermediate thawing. After cryo-substitution and further processing, the resulting TEM-micrographs showed excellent ultrastructure preservation of the different organisms when compared to specimens fixed at ambient temperature. CONCLUSIONS: The method presented allows preserving the ultrastructure of plant cells in the frozen state during cryo-fixation. The resulting high quality TEM-images represent an important step towards a better understanding of the consequences of extracellular ice formation on cellular ultrastructure. It has the potential to provide new insights into changes of organelle structure, identification of intracellular injuries during ice formation and may help to understand freezing and thawing processes in plant tissues. It may be combined with analytical TEM such as electron energy loss spectroscopy (EELS), X-ray analyses (EDX) and various other electron microscopic techniques.

9.
J Struct Biol ; 204(1): 52-63, 2018 10.
Article in English | MEDLINE | ID: mdl-29981486

ABSTRACT

Mitochondria are central organelles for energy supply of cells and play an important role in maintenance of ionic balance. Consequently mitochondria are highly sensitive to any kind of stress to which they mainly response by disturbance of respiration, ROS production and release of cytochrome c into the cytoplasm. Many of the physiological and molecular stress reactions of mitochondria are well known, yet there is a lack of information on corresponding stress induced structural changes. 3-D visualization of high-pressure frozen cells by FIB-SEM tomography and TEM tomography as used for the present investigation provide an excellent tool for studying structure related mitochondrial stress reactions. In the present study it is shown that mitochondria in the unicellular fresh-water algal model system Micrasterias as well as in the closely related aquatic higher plant Lemna fuse to local networks as a consequence of exposure to ionic stress induced by addition of KCl, NaCl and CoCl2. In dependence on concentration and duration of the treatment, fusion of mitochondria occurs either by formation of protuberances arising from the outer mitochondrial membrane, or by direct contact of the surface of elongated mitochondria. As our results show that respiration is maintained in both model systems during ionic stress and mitochondrial fusion, as well as formation of protuberances are reversible, we assume that mitochondrial fusion is a ubiquitous process that may help the cells to cope with stress. This may occur by interconnecting the respiratory chains of the individual mitochondria and by enhancing the buffer capacity against stress induced ionic imbalance.


Subject(s)
Electron Microscope Tomography/methods , Cobalt/chemistry , Microscopy, Electron, Transmission , Mitochondria/ultrastructure , Osmolar Concentration , Potassium Chloride/chemistry , Sodium Chloride/chemistry
10.
ACS Nano ; 8(11): 11854-9, 2014 Nov 25.
Article in English | MEDLINE | ID: mdl-25380228

ABSTRACT

A hybrid directed self-assembly approach is developed to fabricate unprecedented servo-integrated bit-patterned media templates, by combining sphere-forming block copolymers with 5 teradot/in.(2) resolution capability, nanoimprint and optical lithography with overlay control. Nanoimprint generates prepatterns with different dimensions in the data field and servo field, respectively, and optical lithography controls the selective self-assembly process in either field. Two distinct directed self-assembly techniques, low-topography graphoepitaxy and high-topography graphoepitaxy, are elegantly integrated to create bit-patterned templates with flexible embedded servo information. Spinstand magnetic test at 1 teradot/in.(2) shows a low bit error rate of 10(-2.43), indicating fully functioning bit-patterned media and great potential of this approach for fabricating future ultra-high-density magnetic storage media.

SELECTION OF CITATIONS
SEARCH DETAIL