Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
Biomed Pharmacother ; 171: 116177, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38262151

ABSTRACT

Although uncontrolled hyperglycaemia during pregnancy can cause complications for both the mother and her offspring, pharmacological treatment options for gestational and type 2 diabetes in pregnancy are still limited. Empagliflozin (EMPA), dapagliflozin (DAPA) and canagliflozin (CANA) are three sodium glucose co-transporter 2 (SGLT2) inhibitors, a newer group of oral antidiabetics that are well established in the treatment of type 2 diabetes mellitus in non-pregnant patients. To date, no data regarding their placental transfer and safety in pregnant women are available. We performed ex vivo human placental perfusions (n = 4, term placentas, creatinine and antipyrine as connectivity controls) to evaluate the transplacental transfer of EMPA, DAPA and CANA across the placental barrier and assessed their influence on the secretion of two placental peptide hormones, leptin and ß-human chorionic gonadotropin (ß-hCG). We discovered that all three SGLT2 inhibitors cross the placental barrier and attained maximal foetal to maternal concentration ratios of 0.38 ± 0.09 (EMPA), 0.67 ± 0.05 (DAPA) and 0.62 ± 0.05 (CANA) within the tested 360 min. A moderate but statistically significant decrease in placental leptin - but not ß-hCG - secretion was observed during perfusions with SGLT2 inhibitors, which was confirmed in experiments performed with human placental BeWo cells. SGLT2 inhibitors are able to cross the human placental barrier and seem to interfere with placental leptin production. These observations should be considered in the ongoing discussion on the optimal treatment for gestational diabetes and type 2 diabetes mellitus in pregnancy.


Subject(s)
Diabetes Mellitus, Type 2 , Glucosides , Sodium-Glucose Transporter 2 Inhibitors , Humans , Female , Pregnancy , Canagliflozin/pharmacology , Sodium-Glucose Transporter 2 Inhibitors/therapeutic use , Diabetes Mellitus, Type 2/drug therapy , Leptin , Placenta , Benzhydryl Compounds/pharmacology , Hypoglycemic Agents/pharmacology , Perfusion
2.
Horm Metab Res ; 56(4): 300-307, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37924818

ABSTRACT

Hypokalemia plays an important role in the diagnosis and management of primary aldosteronism (PA). While the hypokalemic variant of the disease accounts for about one third of all cases, little is known about the incidence of PA in hypokalemic populations. The IPAHK+ study is an epidemiological, cross-sectional trial to provide evidence on the incidence of PA in hypokalemic patients from a university hospital outpatient population. Recruitment of outpatients with hypokalemia≤3 mmol/l is carried out on a continuous referral-basis through an automated data delivery system. Up to an interim data closure, 66 patients underwent the study protocol. The mean age of the participants was 52.9±1.5 years with an equal sex ratio of 1:1 women to men, a mean potassium value of 2.78±0.31 mmol/l [1.8;3.0] and a prevalence of arterial hypertension of 72.7%. PA was diagnosed in 46.6% of all participants, all of whom had a history of hypertension. Incidence of PA increased continuously with decreasing potassium levels with proportions of 26.7%, 50% and 57.1% in the subgroups of 3.0 mmol/l (n=15), 2.8-2.9 mmol/l (n=22) and≤2.7 mmol/l (n=21), respectively. Prior to testing, 59.1% of all patients presented at least with one plausible other cause of hypokalemia. The incidence of PA in the investigated outpatient population was more than 4 out of 10 and inversely correlated with baseline potassium levels. Moderate or severe hypokalemia, regardless of its cause, should therefore prompt evaluation for PA in hypertensive individuals. Normotensive hypokalemic PA was not observed in this cohort.


Subject(s)
Hyperaldosteronism , Hypertension , Hypokalemia , Male , Humans , Female , Middle Aged , Hypokalemia/complications , Hypokalemia/epidemiology , Incidence , Cross-Sectional Studies , Hyperaldosteronism/complications , Hyperaldosteronism/epidemiology , Hyperaldosteronism/diagnosis , Potassium , Hypertension/complications , Hypertension/epidemiology , Aldosterone
3.
Article in English | MEDLINE | ID: mdl-37542935

ABSTRACT

A liquid chromatography - tandem mass spectrometry (LC-MS/MS) method has been developed to simultaneously measure four sodium glucose co-transporter 2 (SGLT2) inhibitors and the transfer marker antipyrine (ANTI) in perfusion medium and placental tissue collected from ex vivo human placental perfusions. The four SGLT2 inhibitors were empagliflozin (EMPA), dapagliflozin (DAPA), ertugliflozin (ERTU) and canagliflozin (CANA). Chromatographic separation was achieved on an Uptisphere® C18 reversed phase column (50 mm × 4.6 mm × 5 µm) within 2.85 min, using a gradient elution with 10 mM ammonium formate in water (mobile phase A) and acetonitrile (mobile phase B) both with 0.1% formic acid. Analysis of ammonium adduct ions was performed on an AB SCIEX 6500+ triple quadrupole mass spectrometer using positive electrospray ionisation and scheduled multiple reaction monitoring (sMRM). The transitions were m/z 468.00 â†’ 355.20 (EMPA), m/z 426.00 â†’ 167.20 (DAPA), m/z 437.10 â†’ 206.90 (ERTU), m/z 462.00 â†’ 249.00 (CANA) and m/z 189.20 â†’ 55.90 (ANTI). The method was validated according to the European Medicines Agency guidelines and was proven to be selective, linear within a concentration range of 1-1000 µg/L (DAPA, CANA, ANTI) and 1-500 µg/L (EMPA, ERTU), accurate, precise and free of carry-over, instabilities, recovery and matrix effect issues. This newly developed method is suitable to analyse perfusion medium and placenta tissue samples collected during ex vivo human placenta perfusions. It thereby enables quantification of transport across the placental barrier of the SGLT2 inhibitors EMPA, DAPA, ERTU and CANA as well as the transfer marker ANTI.


Subject(s)
Sodium-Glucose Transporter 2 Inhibitors , Pregnancy , Humans , Female , Chromatography, Liquid/methods , Tandem Mass Spectrometry/methods , Antipyrine , Placenta , Canagliflozin , Perfusion , Reproducibility of Results , Chromatography, High Pressure Liquid/methods
4.
Travel Med Infect Dis ; 54: 102590, 2023.
Article in English | MEDLINE | ID: mdl-37209974

ABSTRACT

BACKGROUND: Hair analysis to identify substance use is an established methodology. This could also be a method to monitor adherence to antimalarial drugs. We aimed to establish a methodology to determine hair concentrations of atovaquone, proguanil and mefloquine in travellers using chemoprophylaxis. METHODS: A liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was developed and validated for simultaneous analysis of the antimalarial drugs -atovaquone (ATQ), proguanil (PRO) and mefloquine (MQ), in human hair. The hair samples from five volunteers were used for this proof-of-concept analysis. Three volunteers were taking daily atovaquone/proguanil (ATQ/PRO) chemoprophylaxis and two volunteers were using weekly mefloquine (MQ) chemoprophylaxis. RESULTS: With this proof-of-principle analysis, we could show that ATQ/PRO and MQ are integrated into the hair matrix. Chemoprophylaxis could be quantified with the established method. In hair segments, maximal concentrations of 3.0 ng/mL/20 mg hair proguanil, 1.3 ng/mL/20 mg hair atovaquone and 78.3 ng/mL/20 mg hair mefloquine were measured. Moreover, malaria drug concentration changes correlated with the time interval since finishing the chemoprophylaxis regimen. CONCLUSIONS: The validated method was used successfully for the analysis of antimalarial-drug positive hair samples containing atovaquone, proguanil or mefloquine. This research shows that hair can be used for adherence monitoring of chemoprophylaxis and paves the way for larger studies and optimized procedures.


Subject(s)
Antimalarials , Humans , Antimalarials/therapeutic use , Proguanil/therapeutic use , Atovaquone/therapeutic use , Mefloquine/therapeutic use , Chromatography, Liquid , Drug Therapy, Combination , Travel , Tandem Mass Spectrometry , Drug Combinations
5.
Am J Transplant ; 23(2): 190-201, 2023 02.
Article in English | MEDLINE | ID: mdl-36804129

ABSTRACT

Surgical liver failure (SLF) develops when a marginal amount of hepatic mass is left after surgery, such as following excessive resection. SLF is the commonest cause of death due to liver surgery; however, its etiology remains obscure. Using mouse models of standard hepatectomy (sHx) (68%, resulting in full regeneration) or extended hepatectomy (eHx) (86%/91%, causing SLF), we explored the causes of early SLF related to portal hyperafflux. Assessing the levels of HIF2A with or without oxygenating agent inositol trispyrophosphate (ITPP) indicated hypoxia early after eHx. Subsequently, lipid oxidation (PPARA/PGC1α) was downregulated and associated with persisting steatosis. Mild oxidation with low-dose ITPP reduced the levels of HIF2A, restored downstream PPARA/PGC1α expression along with lipid oxidation activities (LOAs), and normalized steatosis and other metabolic or regenerative SLF deficiencies. Promotion of LOA with L-carnitine likewise normalized the SLF phenotype, and both ITPP and L-carnitine markedly raised survival in lethal SLF. In patients who underwent hepatectomy, pronounced increases in serum carnitine levels (reflecting LOA) were associated with better recovery. Lipid oxidation thus provides a link between the hyperafflux of O2-poor portal blood, the metabolic/regenerative deficits, and the increased mortality typifying SLF. Stimulation of lipid oxidation-the prime regenerative energy source-particularly through L-carnitine may offer a safe and feasible way to reduce SLF risks in the clinic.


Subject(s)
Liver Failure , Liver , Mice , Animals , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Liver/surgery , Liver/metabolism , Liver Failure/surgery , Hepatectomy/adverse effects , Liver Regeneration/physiology , Hypoxia , Carnitine/metabolism , Lipids
6.
Horm Metab Res ; 53(12): 787-793, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34891208

ABSTRACT

Hypokalemia plays a central role for case finding, course, treatment decision, and prognosis of patients with primary aldosteronism. However, to date there is a lack of high-level evidence about the incidence of primary aldosteronism in hypokalemic patients. The IPAHK+study is an epidemiological, cross-sectional, monocentric study to provide evidence on the incidence of PA in a hypokalemic population. The aim of the current analysis was to describe the baseline characteristics of the first 100 patients eligible for study inclusion. The recruitment of patients with hypokalemia (≤3 mmol/l) is carried out continuously on a referral-basis by the central laboratory of the University Hospital Zurich through an automated suitability testing and data delivery system. The careful evaluation of the first 100 reported patients was based on the available reporting system. Out of 28 140 screened patients, 222 (0.79%) were identified with a serum potassium value of≤3 mmol/l (mean 2.89±0.02 mmol/l). Mean potassium levels were slightly lower in non-hypertensive subjects compared to hypertensive subjects (mean difference 0.07 mmol/l, p=0.033), while no significant difference was found between the sexes and patients with and without the diagnosis of primary aldosteronism, atrial fibrillation, or the use of diuretics. The incidence of PA was 4% in the total population studied and 7.5% in the subgroup of hypertensive patients. In conclusion, the continuous enrollment of patients from the IPHAK+hypokalemia registry into the IPAHK+trial will provide evidence about the actual incidence of primary aldosteronism in a hypokalemic outpatient population.


Subject(s)
Hyperaldosteronism/blood , Hypokalemia/blood , Hypokalemia/complications , Adult , Aged , Aged, 80 and over , Cross-Sectional Studies , Female , Humans , Hyperaldosteronism/epidemiology , Hyperaldosteronism/etiology , Hyperaldosteronism/mortality , Hypokalemia/mortality , Incidence , Male , Middle Aged , Potassium/blood , Registries , Research Design , Switzerland/epidemiology , Young Adult
7.
J Lipid Res ; 62: 100122, 2021.
Article in English | MEDLINE | ID: mdl-34563520

ABSTRACT

Hereditary sensory neuropathy type 1 (HSAN1) is a rare axonopathy, characterized by a progressive loss of sensation (pain, temperature, and vibration), neuropathic pain, and wound healing defects. HSAN1 is caused by several missense mutations in the serine palmitoyltransferase long-chain base subunit 1 and serine palmitoyltransferase long-chain base subunit 2 of the enzyme serine palmitoyltransferase-the key enzyme for the synthesis of sphingolipids. The mutations change the substrate specificity of serine palmitoyltransferase, which then forms an atypical class of 1-deoxy-sphinglipids (1-deoxySLs). Similarly, patients with type 2 diabetes mellitus also present with elevated 1-deoxySLs and a comparable clinical phenotype. The effect of 1-deoxySLs on neuronal cells was investigated in detail, but their impact on other cell types remains elusive. Here, we investigated the consequences of externally added 1-deoxySLs on the migration of fibroblasts in a scratch assay as a simplified cellular wound-healing model. We showed that 1-deoxy-sphinganine (1-deoxySA) inhibits the migration of NIH-3T3 fibroblasts in a dose- and time-dependent manner. This was not seen for a non-native, L-threo stereoisomer. Supplemented 1-deoxySA was metabolized to 1-deoxy-(dihydro)ceramide and downstream to 1-deoxy-sphingosine. Inhibiting downstream metabolism by blocking N-acylation rescued the migration phenotype. In contrast, adding 1-deoxy-sphingosine had a lesser effect on cell migration but caused the massive formation of intracellular vacuoles. Further experiments showed that the effect on cell migration was primarily mediated by 1-deoxy-dihydroceramides rather than by the free base or 1-deoxyceramides. Based on these findings, we suggest that limiting the N-acylation of 1-deoxySA could be a therapeutic approach to improve cell migration and wound healing in patients with HSAN1 and type 2 diabetes mellitus.


Subject(s)
Diabetes Mellitus, Type 2/metabolism , Fibroblasts/drug effects , Hereditary Sensory and Autonomic Neuropathies/metabolism , Sphingolipids/pharmacology , Animals , Cell Movement/drug effects , Cells, Cultured , Fibroblasts/metabolism , Mice , NIH 3T3 Cells
8.
J Allergy Clin Immunol ; 144(6): 1648-1659.e9, 2019 12.
Article in English | MEDLINE | ID: mdl-31330218

ABSTRACT

BACKGROUND: Genome-wide association studies in asthma have repeatedly identified single nucleotide polymorphisms in the ORM (yeast)-like protein isoform 3 (ORMDL3) gene across different populations. Although the ORM homologues in yeast are well-known inhibitors of sphingolipid synthesis, it is still unclear whether and how mammalian ORMDL3 regulates sphingolipid metabolism and whether altered sphingolipid synthesis would be causally related to asthma risk. OBJECTIVE: We sought to examine the in vivo role of ORMDL3 in sphingolipid metabolism and allergic asthma. METHODS: Ormdl3-LacZ reporter mice, gene-deficient Ormdl3-/- mice, and overexpressing Ormdl3Tg/wt mice were exposed to physiologically relevant aeroallergens, such as house dust mite (HDM) or Alternaria alternata, to induce experimental asthma. Mass spectrometry-based sphingolipidomics were performed, and airway eosinophilia, TH2 cytokine production, immunoglobulin synthesis, airway remodeling, and bronchial hyperreactivity were measured. RESULTS: HDM challenge significantly increased levels of total sphingolipids in the lungs of HDM-sensitized mice compared with those in control mice. In Ormdl3Tg/wt mice the allergen-induced increase in lung ceramide levels was significantly reduced, whereas total sphingolipid levels were not affected. Conversely, in liver and serum, levels of total sphingolipids, including ceramides, were increased in Ormdl3-/- mice, whereas they were decreased in Ormdl3Tg/wt mice. This difference was independent of allergen exposure. Despite these changes, all features of asthma were identical between wild-type, Ormdl3Tg/wt, and Ormdl3-/- mice across several models of experimental asthma. CONCLUSION: ORMDL3 regulates systemic ceramide levels, but genetically interfering with Ormdl3 expression does not result in altered experimental asthma.


Subject(s)
Asthma/immunology , Ceramides/immunology , Lipid Metabolism/immunology , Membrane Proteins/immunology , Th2 Cells/immunology , Animals , Asthma/genetics , Ceramides/genetics , Cytokines/genetics , Cytokines/immunology , Disease Models, Animal , Genetic Predisposition to Disease , Genome-Wide Association Study , Lipid Metabolism/genetics , Membrane Proteins/genetics , Mice , Mice, Knockout , Th2 Cells/pathology
9.
Int J Obes (Lond) ; 43(12): 2394-2406, 2019 12.
Article in English | MEDLINE | ID: mdl-31270430

ABSTRACT

BACKGROUND/OBJECTIVES: The incidence of obesity and metabolic syndrome (MetS) has rapidly increased worldwide. Roux-en-Y gastric bypass (RYGB) achieves long-term weight loss and improves MetS-associated comorbidities. Using a mouse model with a humanized lipoprotein metabolism, we elucidated whether improvements in lipid and glucose metabolism after RYGB surgery are body weight loss-dependent or not. SUBJECTS/METHODS: Male ApoE*3Leiden.CETP (ApoE3L.CETP) mice fed Western type diet for 6 weeks underwent RYGB or Sham surgery. Sham groups were either fed ad libitum or were body weight-matched (BWm) to the RYGB mice to discriminate surgical effects from body weight loss-associated effects. Before and after surgery, plasma was collected to assess the metabolic profile, and glucose tolerance and insulin sensitivity were tested. Twenty days after surgery, mice were sacrificed, and liver was collected to assess metabolic, histological and global gene expression changes after surgery. RESULTS: RYGB induced a marked reduction in body weight, which was also achieved by severe food restriction in BWm mice, and total fat mass compared to Sham ad libitum mice (Sham AL). Total cholesterol, non-high-density lipoprotein cholesterol (non-HDL-C) and ceramide were strongly reduced 20 days after surgery in RYGB compared to BWm mice. Glucose tolerance and insulin sensitivity improved 13 days after surgery similarly in RYGB and BWm mice. Liver histology confirmed lipid reduction in RYGB and BWm mice while the transcriptomics data indicated altered genes expression in lipid metabolism. CONCLUSIONS: RYGB surgery improves glucose metabolism and greatly ameliorates lipid metabolism in part in a body weight-dependent manner. Given that ApoE3L.CETP mice were extensively studied to describe the MetS, and given that RYGB improved ceramide after surgery, our data confirmed the usefulness of ApoE3L.CETP mice after RYGB in deciphering the metabolic improvements to treat the MetS.


Subject(s)
Body Weight/physiology , Gastric Bypass , Lipid Metabolism/physiology , Weight Loss/physiology , Animals , Apolipoproteins E/genetics , Blood Glucose/metabolism , Disease Models, Animal , Eating/physiology , Liver/chemistry , Liver/physiology , Male , Metabolic Syndrome/physiopathology , Mice , Mice, Transgenic
10.
Elife ; 82019 03 13.
Article in English | MEDLINE | ID: mdl-30864945

ABSTRACT

Age-related macular degeneration (AMD) is a progressive disease of the retinal pigment epithelium (RPE) and the retina leading to loss of central vision. Polymorphisms in genes involved in lipid metabolism, including the ATP-binding cassette transporter A1 (ABCA1), have been associated with AMD risk. However, the significance of retinal lipid handling for AMD pathogenesis remains elusive. Here, we study the contribution of lipid efflux in the RPE by generating a mouse model lacking ABCA1 and its partner ABCG1 specifically in this layer. Mutant mice show lipid accumulation in the RPE, reduced RPE and retinal function, retinal inflammation and RPE/photoreceptor degeneration. Data from human cell lines indicate that the ABCA1 AMD risk-conferring allele decreases ABCA1 expression, identifying the potential molecular cause that underlies the genetic risk for AMD. Our results highlight the essential homeostatic role for lipid efflux in the RPE and suggest a pathogenic contribution of reduced ABCA1 function to AMD.


Subject(s)
ATP Binding Cassette Transporter 1/metabolism , ATP Binding Cassette Transporter, Subfamily G, Member 1/metabolism , Lipid Metabolism , Retinal Degeneration/physiopathology , Retinal Pigment Epithelium/physiopathology , ATP Binding Cassette Transporter 1/deficiency , ATP Binding Cassette Transporter, Subfamily G, Member 1/deficiency , Animals , Cell Line , Disease Models, Animal , Humans , Inflammation/pathology , Mice , Photoreceptor Cells/pathology
11.
J Clin Invest ; 129(3): 1229-1239, 2019 03 01.
Article in English | MEDLINE | ID: mdl-30620338

ABSTRACT

BACKGROUND: Sphingolipids are important components of cellular membranes and functionally associated with fundamental processes such as cell differentiation, neuronal signaling, and myelin sheath formation. Defects in the synthesis or degradation of sphingolipids leads to various neurological pathologies; however, the entire spectrum of sphingolipid metabolism disorders remains elusive. METHODS: A combined approach of genomics and lipidomics was applied to identify and characterize a human sphingolipid metabolism disorder. RESULTS: By whole-exome sequencing in a patient with a multisystem neurological disorder of both the central and peripheral nervous systems, we identified a homozygous p.Ala280Val variant in DEGS1, which catalyzes the last step in the ceramide synthesis pathway. The blood sphingolipid profile in the patient showed a significant increase in dihydro sphingolipid species that was further recapitulated in patient-derived fibroblasts, in CRISPR/Cas9-derived DEGS1-knockout cells, and by pharmacological inhibition of DEGS1. The enzymatic activity in patient fibroblasts was reduced by 80% compared with wild-type cells, which was in line with a reduced expression of mutant DEGS1 protein. Moreover, an atypical and potentially neurotoxic sphingosine isomer was identified in patient plasma and in cells expressing mutant DEGS1. CONCLUSION: We report DEGS1 dysfunction as the cause of a sphingolipid disorder with hypomyelination and degeneration of both the central and peripheral nervous systems. TRIAL REGISTRATION: Not applicable. FUNDING: Seventh Framework Program of the European Commission, Swiss National Foundation, Rare Disease Initiative Zurich.


Subject(s)
Central Nervous System Diseases , Fatty Acid Desaturases , Lipid Metabolism, Inborn Errors , Mutation, Missense , Sphingosine , Amino Acid Substitution , Cell Line , Central Nervous System Diseases/enzymology , Central Nervous System Diseases/genetics , Central Nervous System Diseases/pathology , Fatty Acid Desaturases/genetics , Fatty Acid Desaturases/metabolism , Female , Humans , Lipid Metabolism, Inborn Errors/enzymology , Lipid Metabolism, Inborn Errors/genetics , Lipid Metabolism, Inborn Errors/pathology , Male , Sphingosine/genetics , Sphingosine/metabolism , Exome Sequencing
12.
Neurology ; 88(6): 533-542, 2017 Feb 07.
Article in English | MEDLINE | ID: mdl-28077491

ABSTRACT

OBJECTIVE: To identify the unknown genetic cause in a nuclear family with an axonal form of peripheral neuropathy and atypical disease course. METHODS: Detailed neurologic, electrophysiologic, and neuropathologic examinations of the patients were performed. Whole exome sequencing of both affected individuals was done. The effect of the identified sequence variations was investigated at cDNA and protein level in patient-derived lymphoblasts. The plasma sphingoid base profile was analyzed. Functional consequences of neuron-specific downregulation of the gene were studied in Drosophila. RESULTS: Both patients present an atypical form of axonal peripheral neuropathy, characterized by acute or subacute onset and episodes of recurrent mononeuropathy. We identified compound heterozygous mutations cosegregating with disease and absent in controls in the SGPL1 gene, encoding sphingosine 1-phosphate lyase (SPL). The p.Ser361* mutation triggers nonsense-mediated mRNA decay. The missense p.Ile184Thr mutation causes partial protein degradation. The plasma levels of sphingosine 1-phosphate and sphingosine/sphinganine ratio were increased in the patients. Neuron-specific downregulation of the Drosophila orthologue impaired the morphology of the neuromuscular junction and caused progressive degeneration of the chemosensory neurons innervating the wing margin bristles. CONCLUSIONS: We suggest SPL deficiency as a cause of a distinct form of Charcot-Marie-Tooth disease in humans, thus extending the currently recognized clinical and genetic spectrum of inherited peripheral neuropathies. Our data emphasize the importance of sphingolipid metabolism for neuronal function.


Subject(s)
Aldehyde-Lyases/deficiency , Aldehyde-Lyases/genetics , Aldehyde-Lyases/metabolism , Charcot-Marie-Tooth Disease/genetics , Codon, Nonsense , Drosophila Proteins/metabolism , Mutation, Missense , Adult , Animals , Animals, Genetically Modified , Cells, Cultured , Charcot-Marie-Tooth Disease/physiopathology , Cohort Studies , Drosophila Proteins/genetics , Drosophila melanogaster , Female , Humans , Lymphocytes/metabolism , Lymphocytes/pathology , Lysophospholipids/blood , Male , Neurons/metabolism , Neurons/pathology , Siblings , Sphingosine/analogs & derivatives , Sphingosine/blood
13.
J Lipid Res ; 57(7): 1194-203, 2016 07.
Article in English | MEDLINE | ID: mdl-27165858

ABSTRACT

The 1-deoxysphingolipids (1-deoxySLs) are formed by an alternate substrate usage of the enzyme, serine-palmitoyltransferase, and are devoid of the C1-OH-group present in canonical sphingolipids. Pathologically elevated 1-deoxySL levels are associated with the rare inherited neuropathy, HSAN1, and diabetes type 2 and might contribute to ß cell failure and the diabetic sensory neuropathy. In analogy to canonical sphingolipids, it was assumed that 1-deoxySLs also bear a (4E) double bond, which is normally introduced by sphingolipid delta(4)-desaturase 1. This, however, was never confirmed. We therefore supplemented HEK293 cells with isotope-labeled D3-1-deoxysphinganine and compared the downstream formed D3-1-deoxysphingosine (1-deoxySO) to a commercial synthetic SPH m18:1(4E)(3OH) standard. Both compounds showed the same m/z, but differed in their RPLC retention time and atmospheric pressure chemical ionization in-source fragmentation, suggesting that the two compounds are structural isomers. Using dimethyl disulfide derivatization followed by MS(2) as well as differential-mobility spectrometry combined with ozone-induced dissociation MS, we identified the carbon-carbon double bond in native 1-deoxySO to be located at the (Δ14) position. Comparing the chromatographic behavior of native 1-deoxySO to chemically synthesized SPH m18:1(14Z) and (14E) stereoisomers assigned the native compound to be SPH m18:1(14Z). This indicates that 1-deoxySLs are metabolized differently than canonical sphingolipids.


Subject(s)
Diabetes Mellitus, Type 2/metabolism , Diabetic Neuropathies/metabolism , Hereditary Sensory and Autonomic Neuropathies/metabolism , Sphingosine/analogs & derivatives , Carbon/chemistry , Diabetes Mellitus, Type 2/enzymology , Diabetes Mellitus, Type 2/pathology , Diabetic Neuropathies/enzymology , Diabetic Neuropathies/pathology , HEK293 Cells , Hereditary Sensory and Autonomic Neuropathies/enzymology , Hereditary Sensory and Autonomic Neuropathies/pathology , Humans , Lipids , Oxidoreductases/chemistry , Oxidoreductases/metabolism , Serine C-Palmitoyltransferase/chemistry , Serine C-Palmitoyltransferase/metabolism , Sphingosine/chemistry , Sphingosine/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...