Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Cell Mol Immunol ; 20(2): 201-213, 2023 02.
Article in English | MEDLINE | ID: mdl-36600048

ABSTRACT

Gastrointestinal infections are a major cause for serious clinical complications in infants. The induction of antibody responses by B cells is critical for protective immunity against infections and requires CXCR5+PD-1++ CD4+ T cells (TFH cells). We investigated the ontogeny of CXCR5+PD-1++ CD4+ T cells in human intestines. While CXCR5+PD-1++ CD4+ T cells were absent in fetal intestines, CXCR5+PD-1++ CD4+ T cells increased after birth and were abundant in infant intestines, resulting in significant higher numbers compared to adults. These findings were supported by scRNAseq analyses, showing increased frequencies of CD4+ T cells with a TFH gene signature in infant intestines compared to blood. Co-cultures of autologous infant intestinal CXCR5+PD-1+/-CD4+ T cells with B cells further demonstrated that infant intestinal TFH cells were able to effectively promote class switching and antibody production by B cells. Taken together, we demonstrate that functional TFH cells are numerous in infant intestines, making them a promising target for oral pediatric vaccine strategies.


Subject(s)
CD4-Positive T-Lymphocytes , Programmed Cell Death 1 Receptor , T-Lymphocytes, Helper-Inducer , Adult , Child , Humans , Infant , B-Lymphocytes , Receptors, CXCR5 , CD4-Positive T-Lymphocytes/immunology
2.
Immunity ; 50(2): 462-476.e8, 2019 02 19.
Article in English | MEDLINE | ID: mdl-30770246

ABSTRACT

Although the fetal immune system is considered tolerogenic, preterm infants can suffer from severe intestinal inflammation, including necrotizing enterocolitis (NEC). Here, we demonstrate that human fetal intestines predominantly contain tumor necrosis factor-α (TNF-α)+CD4+CD69+ T effector memory (Tem) cells. Single-cell RNA sequencing of fetal intestinal CD4+ T cells showed a T helper 1 phenotype and expression of genes mediating epithelial growth and cell cycling. Organoid co-cultures revealed a dose-dependent, TNF-α-mediated effect of fetal intestinal CD4+ T cells on intestinal stem cell (ISC) development, in which low T cell numbers supported epithelial development, whereas high numbers abrogated ISC proliferation. CD4+ Tem cell frequencies were higher in inflamed intestines from preterm infants with NEC than in healthy infant intestines and showed enhanced TNF signaling. These findings reveal a distinct population of TNF-α-producing CD4+ T cells that promote mucosal development in fetal intestines but can also mediate inflammation upon preterm birth.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , Fetus/immunology , Immunologic Memory/immunology , Intestines/immunology , Tumor Necrosis Factor-alpha/immunology , Animals , CD4-Positive T-Lymphocytes/metabolism , Epithelial Cells/cytology , Epithelial Cells/immunology , Epithelial Cells/metabolism , Female , Fetus/metabolism , Humans , Infant, Newborn , Intestinal Mucosa/embryology , Intestinal Mucosa/growth & development , Intestinal Mucosa/immunology , Intestines/embryology , Intestines/growth & development , Mice, Inbred C57BL , Pregnancy , Stem Cells/cytology , Stem Cells/immunology , Stem Cells/metabolism , Th1 Cells/immunology , Th1 Cells/metabolism , Tumor Necrosis Factor-alpha/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL