Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38956275

ABSTRACT

BACKGROUND & OBJECTIVE: Disposable face masks are a primary protective measure against the adverse health effects of exposure to infectious and toxic aerosols such as airborne viruses and particulate air pollutants. While the fit of high efficiency respirators is regulated in occupational settings, relatively little is known about the fitted filtration efficiencies of ear loop style face masks worn by the public. METHODS: We measured the variation in fitted filtration efficiency (FFE) of four commonly worn disposable face masks, in a cohort of healthy adult participants (N = 100, 50% female, 50% male, average age = 32.3 ± 9.2 years, average BMI = 25.5 ± 3.4) using the U.S. Occupational Safety and Health Administration Quantitative Fit Test, for an N95 (respirator), KN95, surgical, and KF94 masks. The latter three ear loop style masks were additionally tested in a clip-modified condition, tightened using a plastic clip to centrally fasten loops in the back of the head. RESULTS: The findings show that sex is a major determinant of the FFE of KN95, surgical, and KF94 masks. On average, males had an 11% higher FFE relative to females, at baseline testing. We show that a simple modification using an ear loop clip, results in improvements in the average FFE for females but provides comparatively minor changes for males. On average, females had a 20% increased FFE when a clip was worn behind the head, relative to a 6% increase for males. IMPACT: The efficacy of a disposable face mask as protection against air contaminants depends on the efficiency of the mask materials and how well it fits the wearer. We report that the sex of the wearer is a major determinant of the baseline fitted filtration efficiency (FFE) of commonly available ear loop style face masks. In addition, we show that a simple fit modifier, an ear loop clip fastened behind the head, substantially improves baseline FFE for females but produces only minor changes for males. These findings have significant public health implications for the use of face masks as a protective intervention against inhalational exposure to airborne contaminants.

2.
Environ Epidemiol ; 8(1): e285, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38343733

ABSTRACT

Fine particle pollution is a well-established risk to human health. Observational epidemiology generally treats events as though they are independent of one another and so do not examine the role air pollution may play in promoting the progression of disease. Multistate survival models account for the complex pathway of disease to death. We employ a multistate survival model to characterize the role of chronic exposure to PM2.5 in affecting the rate at which Medicare beneficiaries transition to first hospitalization for cardiovascular disease and then subsequently death. We use an open cohort of Medicare beneficiaries and PM2.5 concentrations estimated with photochemical model predictions, satellite-based observations, land-use data, and meteorological variables. The multistate model included three transitions: (1) entry to cardiovascular hospital admission; (2) entry to death; and (3) cardiovascular hospital admission to death. The transition intensity was modeled using a Cox proportional hazards model. For a 1 µg/m3 increase in annual mean PM2.5, we estimate a nationally pooled hazard ratio of 1.022 (95% confidence interval [CI] = 1.018, 1.025) for the transition from entry to first cardiovascular hospital admission; 1.054 (95% CI = 1.039, 1.068) for the transition from entry to death; 1.036 (95% CI = 1.027, 1.044) for the transition from first cardiovascular hospital admission to death. The hazard ratios exhibited some heterogeneity within each of nine climatological regions and for each of the three transitions. We find evidence for the role of PM in both promoting chronic illness and increasing the subsequent risk of death.

3.
Environ Int ; 178: 108005, 2023 08.
Article in English | MEDLINE | ID: mdl-37437316

ABSTRACT

Many United States (US) cities are experiencing urban heat islands (UHIs) and climate change-driven temperature increases. Extreme heat increases cardiovascular disease (CVD) risk, yet little is known about how this association varies with UHI intensity (UHII) within and between cities. We aimed to identify the urban populations most at-risk of and burdened by heat-related CVD morbidity in UHI-affected areas compared to unaffected areas. ZIP code-level daily counts of CVD hospitalizations among Medicare enrollees, aged 65-114, were obtained for 120 US metropolitan statistical areas (MSAs) between 2000 and 2017. Mean ambient temperature exposure was estimated by interpolating daily weather station observations. ZIP codes were classified as low and high UHII using the first and fourth quartiles of an existing surface UHII metric, weighted to each have 25% of all CVD hospitalizations. MSA-specific associations between ambient temperature and CVD hospitalization were estimated using quasi-Poisson regression with distributed lag non-linear models and pooled via multivariate meta-analyses. Across the US, extreme heat (MSA-specific 99th percentile, on average 28.6 °C) increased the risk of CVD hospitalization by 1.5% (95% CI: 0.4%, 2.6%), with considerable variation among MSAs. Extreme heat-related CVD hospitalization risk in high UHII areas (2.4% [95% CI: 0.4%, 4.3%]) exceeded that in low UHII areas (1.0% [95% CI: -0.8%, 2.8%]), with upwards of a 10% difference in some MSAs. During the 18-year study period, there were an estimated 37,028 (95% CI: 35,741, 37,988) heat-attributable CVD admissions. High UHII areas accounted for 35% of the total heat-related CVD burden, while low UHII areas accounted for 4%. High UHII disproportionately impacted already heat-vulnerable populations; females, individuals aged 75-114, and those with chronic conditions living in high UHII areas experienced the largest heat-related CVD impacts. Overall, extreme heat increased cardiovascular morbidity risk and burden in older urban populations, with UHIs exacerbating these impacts among those with existing vulnerabilities.


Subject(s)
Cardiovascular Diseases , Hot Temperature , Aged , Female , Humans , Cardiovascular Diseases/epidemiology , Cities/epidemiology , Medicare , Time Factors , United States/epidemiology , Aged, 80 and over
4.
Nat Commun ; 13(1): 2301, 2022 Apr 28.
Article in English | MEDLINE | ID: mdl-35484351

ABSTRACT

The 2-dimensional layered oxide material SrCu2(BO3)2, long studied as a realization of the Shastry-Sutherland spin topology, exhibits a range of intriguing physics as a function of both hydrostatic pressure and magnetic field, with a still debated intermediate plaquette phase appearing at approximately 20 kbar and a possible deconfined critical point at higher pressure. Here, we employ a tunnel diode oscillator (TDO) technique to probe the behavior in the combined extreme conditions of high pressure, high magnetic field, and low temperature. We reveal an extensive phase space consisting of multiple magnetic analogs of the elusive supersolid phase and a magnetization plateau. In particular, a 10 × 2 supersolid and a 1/5 plateau, identified by infinite Projected Entangled Pair States (iPEPS) calculations, are found to rely on the presence of both magnetic and non-magnetic particles in the sea of dimer singlets. These states are best understood as descendants of the full-plaquette phase, the leading candidate for the intermediate phase of SrCu2(BO3)2.

5.
Nat Commun ; 10(1): 2439, 2019 06 04.
Article in English | MEDLINE | ID: mdl-31164637

ABSTRACT

Impurities often play a defining role in the ground states of frustrated quantum magnets. Studies of their effects are crucial in understanding of the phase diagram in these materials. SrCu2(BO3)2, an experimental realization of the Shastry-Sutherland (SS) lattice, provides a unique model system for such studies using both experimental and numerical approaches. Here we report effects of impurities on the crystals of bound states, and doping-induced emergent ground states in Mg-doped SrCu2(BO3)2, which remain stable in high magnetic fields. Using four complementary magnetometry techniques and theoretical simulations, a rich impurity-induced phenomenology at high fields is discovered. The results demonstrate a rare example in which even a small doping concentration interacts strongly with both triplets and bound states of triplets, and thus plays a significant role in the magnetization process even at high magnetic fields. Our findings provide insights into the study of impurity effects in geometrically frustrated quantum magnets.

6.
Soft Matter ; 12(9): 2505-14, 2016 Mar 07.
Article in English | MEDLINE | ID: mdl-26843132

ABSTRACT

Arrangements of identical hard spheres confined to a cylinder with hard walls have been used to model experimental systems, such as fullerenes in nanotubes and colloidal wire assembly. Finding the densest configurations, called close packings, of hard spheres of diameter σ in a cylinder of diameter D is a purely geometric problem that grows increasingly complex as D/σ increases, and little is thus known about the regime for D > 2.873σ. In this work, we extend the identification of close packings up to D = 4.00σ by adapting Torquato-Jiao's adaptive-shrinking-cell formulation and sequential-linear-programming (SLP) technique. We identify 17 new structures, almost all of them chiral. Beyond D ≈ 2.85σ, most of the structures consist of an outer shell and an inner core that compete for being close packed. In some cases, the shell adopts its own maximum density configuration, and the stacking of core spheres within it is quasiperiodic. In other cases, an interplay between the two components is observed, which may result in simple periodic structures. In yet other cases, the very distinction between the core and shell vanishes, resulting in more exotic packing geometries, including some that are three-dimensional extensions of structures obtained from packing hard disks in a circle.

7.
Sci Rep ; 5: 9111, 2015 Mar 13.
Article in English | MEDLINE | ID: mdl-25765857

ABSTRACT

We report the first occurrence of a natural quasicrystal with decagonal symmetry. The quasicrystal, with composition Al71Ni24Fe5, was discovered in the Khatyrka meteorite, a recently described CV3 carbonaceous chondrite. Icosahedrite, Al63Cu24Fe13, the first natural quasicrystal to be identified, was found in the same meteorite. The new quasicrystal was found associated with steinhardtite (Al38Ni32Fe30), Fe-poor steinhardtite (Al50Ni40Fe10), Al-bearing trevorite (NiFe2O4) and Al-bearing taenite (FeNi). Laboratory studies of decagonal Al71Ni24Fe5 have shown that it is stable over a narrow range of temperatures, 1120 K to 1200 K at standard pressure, providing support for our earlier conclusion that the Khatyrka meteorite reached heterogeneous high temperatures [1100 < T(K) ≤ 1500] and then rapidly cooled after being heated during an impact-induced shock that occurred in outer space 4.5 Gya. The occurrences of metallic Al alloyed with Cu, Ni, and Fe raises new questions regarding conditions that can be achieved in the early solar nebula.

8.
Nat Commun ; 5: 4040, 2014 Jun 13.
Article in English | MEDLINE | ID: mdl-24925481

ABSTRACT

The discovery of a natural quasicrystal, icosahedrite (Al63Cu24Fe13), accompanied by khatyrkite (CuAl2) and cupalite (CuAl) in the CV3 carbonaceous chondrite Khatyrka has posed a mystery as to what extraterrestrial processes led to the formation and preservation of these metal alloys. Here we present a range of evidence, including the discovery of high-pressure phases never observed before in a CV3 chondrite, indicating that an impact shock generated a heterogeneous distribution of pressures and temperatures in which some portions reached at least 5 GPa and 1,200 °C. The conditions were sufficient to melt Al-Cu-bearing minerals, which then rapidly solidified into icosahedrite and other Al-Cu metal phases. The meteorite also contains heretofore unobserved phases of iron-nickel and iron sulphide with substantial amounts of Al and Cu. The presence of these phases in Khatyrka provides further proof that the Al-Cu alloys are natural products of unusual processes that occurred in the early solar system.

SELECTION OF CITATIONS
SEARCH DETAIL
...