Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Nat Commun ; 15(1): 4048, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38744821

ABSTRACT

Phytoplankton blooms provoke bacterioplankton blooms, from which bacterial biomass (necromass) is released via increased zooplankton grazing and viral lysis. While bacterial consumption of algal biomass during blooms is well-studied, little is known about the concurrent recycling of these substantial amounts of bacterial necromass. We demonstrate that bacterial biomass, such as bacterial alpha-glucan storage polysaccharides, generated from the consumption of algal organic matter, is reused and thus itself a major bacterial carbon source in vitro and during a diatom-dominated bloom. We highlight conserved enzymes and binding proteins of dominant bloom-responder clades that are presumably involved in the recycling of bacterial alpha-glucan by members of the bacterial community. We furthermore demonstrate that the corresponding protein machineries can be specifically induced by extracted alpha-glucan-rich bacterial polysaccharide extracts. This recycling of bacterial necromass likely constitutes a large-scale intra-population energy conservation mechanism that keeps substantial amounts of carbon in a dedicated part of the microbial loop.


Subject(s)
Bacteria , Carbon Cycle , Glucans , Glucans/metabolism , Bacteria/metabolism , Bacteria/classification , Bacteria/genetics , Phytoplankton/metabolism , Biomass , Diatoms/metabolism , Eutrophication , Carbon/metabolism , Zooplankton/metabolism , Polysaccharides, Bacterial/metabolism , Polysaccharides, Bacterial/chemistry , Bacterial Proteins/metabolism
2.
Microbiome ; 11(1): 77, 2023 04 17.
Article in English | MEDLINE | ID: mdl-37069671

ABSTRACT

BACKGROUND: Blooms of marine microalgae play a pivotal role in global carbon cycling. Such blooms entail successive blooms of specialized clades of planktonic bacteria that collectively remineralize gigatons of algal biomass on a global scale. This biomass is largely composed of distinct polysaccharides, and the microbial decomposition of these polysaccharides is therefore a process of prime importance. RESULTS: In 2020, we sampled a complete biphasic spring bloom in the German Bight over a 90-day period. Bacterioplankton metagenomes from 30 time points allowed reconstruction of 251 metagenome-assembled genomes (MAGs). Corresponding metatranscriptomes highlighted 50 particularly active MAGs of the most abundant clades, including many polysaccharide degraders. Saccharide measurements together with bacterial polysaccharide utilization loci (PUL) expression data identified ß-glucans (diatom laminarin) and α-glucans as the most prominent and actively metabolized dissolved polysaccharide substrates. Both substrates were consumed throughout the bloom, with α-glucan PUL expression peaking at the beginning of the second bloom phase shortly after a peak in flagellate and the nadir in bacterial total cell counts. CONCLUSIONS: We show that the amounts and composition of dissolved polysaccharides, in particular abundant storage polysaccharides, have a pronounced influence on the composition of abundant bacterioplankton members during phytoplankton blooms, some of which compete for similar polysaccharide niches. We hypothesize that besides the release of algal glycans, also recycling of bacterial glycans as a result of increased bacterial cell mortality can have a significant influence on bacterioplankton composition during phytoplankton blooms. Video Abstract.


Subject(s)
Eutrophication , Phytoplankton , Phytoplankton/genetics , Phytoplankton/metabolism , North Sea , Plankton/genetics , Polysaccharides/metabolism , Bacteria/genetics , Bacteria/metabolism
3.
Microbiologyopen ; 11(3): e1289, 2022 06.
Article in English | MEDLINE | ID: mdl-35765187

ABSTRACT

Marine algae drive the marine carbon cycle, converting carbon dioxide into organic material. A major component of this produced biomass is a variety of glycans. Marine α-glucans include a range of storage glycans from red and green algae, bacteria, fungi, and animals. Although these compounds are likely to account for a high amount of the carbon stored in the oceans they have not been quantified in marine samples so far. Here we present a method to extract and quantify α-glucans (and compare it with the ß-glucan laminarin) in particulate organic matter from algal cultures and environmental samples using sequential physicochemical extraction and enzymes as α-glucan-specific probes. This enzymatic assay is more specific and less susceptible to side reactions than chemical hydrolysis. Using HPAEC-PAD to detect the hydrolysis products allows for a glycan quantification in particulate marine samples down to a concentration of ≈2 µg/L. We measured glucans in three cultured microalgae as well as in marine particulate organic matter from the North Sea and western North Atlantic Ocean. While the ß-glucan laminarin from diatoms and brown algae is an essential component of marine carbon turnover, our results further indicate the significant contribution of starch-like α-glucans to marine particulate organic matter. Henceforth, the combination of glycan-linkage-specific enzymes and chromatographic hydrolysis product detection can provide a powerful tool in the exploration of marine glycans and their role in the global carbon cycle.


Subject(s)
Particulate Matter , beta-Glucans , Animals , Glucans , Oceans and Seas , Polysaccharides
4.
Phys Chem Chem Phys ; 22(13): 6919-6927, 2020 Apr 07.
Article in English | MEDLINE | ID: mdl-32181454

ABSTRACT

The amino acid lysine has been shown to prevent water crystallization at low temperatures in saturated aqueous solutions [S. Cerveny and J. Swenson, Phys. Chem. Chem. Phys., 2014, 16, 22382-22390]. Here, we investigate two ratios of water and lysine (5.4 water molecules per lysine (saturated) and 11 water molecules per lysine) by means of the complementary use of computer simulations and neutron diffraction. By performing a detailed structural analysis we have been able to explain the anti-freeze properties of lysine by the strong hydrogen bond interactions of interstitial water molecules with lysine that prevent them from forming crystalline seeds. Additional water molecules beyond the 1 : 5.4 proportion are no longer tightly bonded to lysine and therefore are free to form crystals.


Subject(s)
Computer Simulation , Cryoprotective Agents/chemistry , Lysine/chemistry , Models, Molecular , Neutron Diffraction , Water/chemistry , Crystallization , Hydrogen Bonding , Solutions/chemistry
5.
J Am Chem Soc ; 140(23): 7301-7312, 2018 06 13.
Article in English | MEDLINE | ID: mdl-29804450

ABSTRACT

The atomic scale process by which proteins fold into their functional forms in aqueous solutions is still not well understood. While there is clearly an interplay between the sequence of the protein and the surrounding water solvent that leads to highly specific and reproducible folding in nature, there is still an ongoing debate concerning how water molecules aid in driving the folding process. By using a combination of techniques that provide information at the atomic level-neutron and X-ray diffraction and computer simulations-the mechanism of folding in a series of peptides that only vary with respect to the central side-chain residue has been determined. Specifically, ß-turn formation for the KGXGK peptide (where X = P, G, S or L) occurs via a two-step water-driven attraction between specific sites on the peptide backbone. This proposed mechanism suggests that the site-specific hydration of the backbone facilitates the initial stages of protein folding and that this hydration interaction in combination with the presence of proline in the i + 1 position helps to stabilize the folded and intermediate folding state of the peptide in solution, leading to a greater propensity for PG containing sequences to occur in ß-turns in proteins.

6.
Phys Chem Chem Phys ; 19(20): 12665-12673, 2017 May 24.
Article in English | MEDLINE | ID: mdl-28474037

ABSTRACT

The solvation of prilocaine has been investigated in pure water and in an amphiphilic methanol/water solution using a combination of neutron diffraction with isotopic substitution augmented by Empirical Potential Structure Refinement (EPSR) simulations. This combination of techniques allows for details of the solvation structure on the atomic scale to be unravelled. The hydration of prilocaine is significantly altered relative to when this molecule is in pure water (as a hydrochloride salt) or in an amphiphilic environment (as a freebase compound). Interestingly, there is not a significant change in hydration around the amine group on prilocaine hydrochloride compared with prilocaine as a freebase. Despite this group being an ammonium group in water and an amine group in methanol/water solutions, the hydration of this motif remains largely intact. The changes in hydration between prilocaine as a free base and prilocaine·HCl instead appears to arise from a change in hydration around the aromatic ring and the amide group in the prilocaine molecule.

7.
J Phys Chem B ; 121(8): 1866-1876, 2017 03 02.
Article in English | MEDLINE | ID: mdl-28134523

ABSTRACT

There is an ongoing debate as to how urea denatures proteins in solution. Using a combination of neutron scattering and computer simulation of a model peptide, KGPGK, it was found that the ionic strength and pH have a significant impact on the urea-peptide interaction. From the work presented here, it appears that urea first and foremost decreases the charge-based interactions in solution, such as the TFA-TFA association, before interacting with the peptide backbone via hydrogen bonds. This gives insight into the pH and salt concentration dependency of urea-caused protein denaturation and might unify direct and indirect theories of urea-induced protein denaturation. The observed differences between MD and neutron and X-ray diffraction data might show that MD, in this particular case, underestimates the influence of charged fluorinated solutes.


Subject(s)
Oligopeptides/chemistry , Protein Denaturation , Salts/chemistry , Trifluoroacetic Acid/chemistry , Urea/chemistry , Hydrogen Bonding , Hydrogen-Ion Concentration , Molecular Dynamics Simulation , Neutron Diffraction , Osmolar Concentration , Solutions/chemistry , X-Ray Diffraction
8.
Phys Chem Chem Phys ; 18(5): 3862-70, 2016 Feb 07.
Article in English | MEDLINE | ID: mdl-26764567

ABSTRACT

The mechanism by which proteins are denatured by urea is still not well understood, especially on the atomic scale where these interactions occur in vivo. In this study, the structure of the peptide GPG has been investigated in aqueous urea solutions in order to understand the combination of roles that both urea and water play in protein unfolding. Using a combination of neutron diffraction enhanced by isotopic substitution and computer simulations, it was found, in opposition with previous simulations studies, that urea is preferred over water around polar and charged portions of the peptides. Further, it appears that while urea directly replaces water around the nitrogen groups on GPG that urea and water occupy different positions around the peptide bond carbonyl groups. This suggests that urea may in fact weaken the peptide bond, disrupting the peptide backbone, thus ultimately causing denaturation.


Subject(s)
Oligopeptides/chemistry , Urea/chemistry , Molecular Dynamics Simulation , Protein Unfolding , Solutions , Water/chemistry
9.
Structure ; 23(5): 851-862, 2015 May 05.
Article in English | MEDLINE | ID: mdl-25892109

ABSTRACT

2'-5'-Oligoadenylate synthetases (OASs) produce the second messenger 2'-5'-oligoadenylate, which activates RNase L to induce an intrinsic antiviral state. We report on the crystal structures of catalytic intermediates of OAS1 including the OAS1·dsRNA complex without substrates, with a donor substrate, and with both donor and acceptor substrates. Combined with kinetic studies of point mutants and the previously published structure of the apo form of OAS1, the new data suggest a sequential mechanism of OAS activation and show the individual roles of each component. They reveal a dsRNA-mediated push-pull effect responsible for large conformational changes in OAS1, the catalytic role of the active site Mg(2+), and the structural basis for the 2'-specificity of product formation. Our data reveal similarities and differences in the activation mechanisms of members of the OAS/cyclic GMP-AMP synthase family of innate immune sensors. In particular, they show how helix 3103-α5 blocks the synthesis of cyclic dinucleotides by OAS1.


Subject(s)
2',5'-Oligoadenylate Synthetase/chemistry , 2',5'-Oligoadenylate Synthetase/metabolism , RNA, Double-Stranded/chemistry , Swine/immunology , 2',5'-Oligoadenylate Synthetase/genetics , Animals , Catalytic Domain , Crystallography, X-Ray , Enzyme Activation , Immunity, Innate , Magnesium/metabolism , Models, Molecular , Nucleotidyltransferases/chemistry , Nucleotidyltransferases/metabolism , Point Mutation , Protein Structure, Secondary , RNA, Double-Stranded/metabolism , Swine/genetics , Swine/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...