Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 117(12): 127401, 2016 Sep 16.
Article in English | MEDLINE | ID: mdl-27689297

ABSTRACT

We show that, by monitoring the free carrier reservoir in a GaAs-based quantum well microcavity under nonresonant pulsed optical pumping, lasing supported by a fermionic reservoir (photon lasing) can be distinguished from lasing supported by a reservoir of bosons (polariton lasing). Carrier densities are probed by measuring the photocurrent between lateral contacts deposited directly on the quantum wells of a microcavity that are partially exposed by wet chemical etching. We identify two clear thresholds in the input-output characteristic of the photoluminescence signal which can be attributed to polariton and photon lasing, respectively. The power dependence of the probed photocurrent shows a distinct kink at the threshold power for photon lasing due to an increased radiative recombination of free carriers as stimulated emission into the cavity mode sets in. At the polariton lasing threshold, on the other hand, the nonlinear increase of the luminescence is caused by stimulated scattering of exciton polaritons to the ground state which do not contribute directly to the photocurrent.

2.
Nanotechnology ; 23(37): 375301, 2012 Sep 21.
Article in English | MEDLINE | ID: mdl-22922443

ABSTRACT

A technology platform for the epitaxial growth of site-controlled InP quantum dots (QDs) on GaAs substrates is presented. Nanoholes are patterned in a GaInP layer on a GaAs substrate by electron beam lithography and dry chemical etching, serving as QD nucleation centers. The effects of a thermal treatment on the structured surfaces for deoxidation are investigated in detail. By regrowth on these surfaces, accurate QD positioning is obtained for square array arrangements with lattice periods of 1.25 µm along with a high suppression of interstitial island formation. The optical properties of these red-emitting QDs (λ ~ 670 nm) are investigated by means of ensemble- and micro-photoluminescence spectroscopy at cryogenic temperatures.

SELECTION OF CITATIONS
SEARCH DETAIL
...