Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Front Plant Sci ; 13: 995307, 2022.
Article in English | MEDLINE | ID: mdl-36247585

ABSTRACT

In this work, we report a successful protocol to obtain in vitro peach palm (Bactris gasipaes Kunth) "Diamantes 10" plants through somatic embryogenesis from transverse thin cell layer (TCL) explants, dissected from three sections (basal, medial, and apical) of lateral offshoots of adult plants cultured on different concentrations of 4-amino-3,5,6-trichloropicolonic acid (picloram). After swelling and development of primary callus in all treatments, without any strong effect of explant origin or picloram concentration, it was possible to observe the formation of embryogenic structures and the exact point from where they developed. Browning was also observed and correlated to the induction treatments, although it was not an impairment for the production of embryogenic structures. Subsequent maturation and conversion of somatic embryos into plantlets allowed their acclimatization 17 months after culture initiation (ACI), which was quicker than previous reports with juvenile tissues (from embryos or seed-germinated plantlets). To the best of our knowledge, this is the first report on peach palm regeneration through somatic embryogenesis from TCL explants from adult plants and could constitute, after fine-tuning the acclimatization stage, a tool for mass clonal propagation of elite genotypes of this open-pollinated crop, as well as for the establishment of conservation strategies of in situ gene bank plant accessions endangered due to aging and other threats.

2.
Methods Mol Biol ; 1359: 279-88, 2016.
Article in English | MEDLINE | ID: mdl-26619867

ABSTRACT

Peach palm (Bactris gasipaes Kunth) is a member of the family Arecaceae and is a multipurpose but underutilized species. Nowadays, fruit production for subsistence and local markets, and heart-of-palm production for local, national, and international markets are the most important uses of this plant. Conventional breeding programs in peach palm are long-term efforts due to the prolonged generation time, large plant size, difficulties with controlled pollination and other factors. Although it is a caespitose palm, its propagation is currently based on seeds, as off-shoots are difficult to root. Hence, tissue culture techniques are considered to be the most likely strategy for efficient clonal plantlet regeneration of this species. Among various techniques, somatic embryogenesis offers the advantages of potential automated large-scale production and putative genetic stability of the regenerated plantlets. The induction of somatic embryogenesis in peach palm can be achieved by using different explant sources including zygotic embryos, immature inflorescences and thin cell layers from the young leaves and shoot meristems. The choice of a particular explant depends on whether clonal propagation is desired or not, as well as on the plant conditions and availability of explants. Protocols to induce and express somatic embryogenesis from different peach palm explants, up to acclimatization of plantlets, are described in this chapter.


Subject(s)
Arecaceae/growth & development , Plant Development/genetics , Plant Somatic Embryogenesis Techniques/methods , Tissue Culture Techniques/methods , Arecaceae/genetics , Fruit/genetics , Fruit/growth & development , Plant Shoots/genetics , Plant Shoots/growth & development , Plants, Genetically Modified/genetics , Plants, Genetically Modified/growth & development
3.
Plant Cell Rep ; 31(12): 2165-76, 2012 Dec.
Article in English | MEDLINE | ID: mdl-22865112

ABSTRACT

UNLABELLED: DNA methylation is an epigenetic regulatory mechanism of gene expression which can be associated with developmental phases and in vitro morphogenetic competence in plants. The present work evaluated the effects of 5-azacytidine (AzaC) and 2,4-dichlorophenoxyacetic acid (2,4-D) on Acca sellowiana somatic embryogenesis (SE) and global DNA methylation levels by high-performance liquid chromatography mass spectrometry (HPLC/MS/MS). 2,4-D-free treatments revealed no somatic embryo formation in both accessions tested. Treatments supplemented with 2,4-D pulse plus AzaC in the culture medium resulted in increased embryo formation. In AzaC-free treatment, HPLC/MS/MS analysis showed a gradual increase in methylation levels in cultures of both accessions tested during SE induction. Treatment with AzaC and 2,4-D-free resulted in a marked decrease in methylation for both accessions, ranging from 37.6 to 20.8 %. In treatment with 2,4-D and AzaC combined, the 85 accession showed increasing global methylation levels. Otherwise, the 101X458 accession, in the same treatment, showed a decrease between 10 and 20 days, followed by an increase after 30 days (39.5, 36.2 and 41.6 %). These results indicate that 2,4-D pulse combined with AzaC improves SE induction. However, the conversion phase showed that although positively influencing SE induction, AzaC had a dysregulatory effect on the stage of autotrophic plant formation, resulting in significantly lower conversion rates. The results suggest that DNA methylation dramatically influences SE in Acca sellowiana, and global DNA methylation dynamics are related to morphogenetic response. KEY MESSAGE: 5-Azacytidine combined with 2,4-D increases the number of Acca sellowiana somatic embryos. Global DNA methylation is directly affected by these compounds.


Subject(s)
2,4-Dichlorophenoxyacetic Acid/pharmacology , Azacitidine/pharmacology , DNA Methylation , Feijoa/drug effects , Plant Somatic Embryogenesis Techniques/methods , Seeds/drug effects , Chromatography, High Pressure Liquid , Culture Media/metabolism , DNA, Plant/genetics , DNA, Plant/metabolism , Epigenesis, Genetic , Feijoa/embryology , Feijoa/genetics , Gene Expression Regulation, Plant , Genes, Plant , Mass Spectrometry , Seeds/embryology , Seeds/genetics
4.
Physiol Plant ; 146(3): 336-49, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22574975

ABSTRACT

Somatic embryogenesis has been described in peach palm as a reliable method for its in vitro multiplication and conservation. In this study, we evaluated the possible role of arabinogalactan proteins (AGPs) during this morphogenetic pathway. The presence of Yariv reagent, a synthesized chemical antibody that specifically binds AGP molecules, affected somatic embryos and callus development rate, but no effect was observed on fresh weight increment. This substance also had profound effects on embryo morphology: somatic embryos presented loose cells in the protoderm and no signs of polarization could be observed. To better evaluate the role of AGPs, analyses of specific monoclonal antibodies (MAbs) against different AGP epitopes revealed a specific pattern of distribution for each epitope. MAb JIM13 had differential expression and showed intense signal on the embryogenic sector and some immediately adjacent layers. MAb JIM7 against pectin recognized cell walls and a specific layer over the developing somatic embryo, as well as over the shoot meristem region of mature somatic embryos. This corresponds to an extracellular matrix surface network (ECMSN) associated with the development of somatic embryos and closely related to the expression of MAb JIM13. Scanning electron microscopy confirmed the presence of an ECMSN covering a specific group of cells and ultra-structural analyses revealed that the ECMSN had lipophilic substances.


Subject(s)
Arecaceae/growth & development , Extracellular Matrix/metabolism , Mucoproteins/metabolism , Antibodies, Monoclonal , Arecaceae/genetics , Arecaceae/physiology , Arecaceae/ultrastructure , Cell Wall/metabolism , Glucosides , Meristem/genetics , Meristem/growth & development , Meristem/physiology , Meristem/ultrastructure , Microscopy, Electron, Scanning , Mucoproteins/genetics , Pectins/metabolism , Phloroglucinol/analogs & derivatives , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Shoots/genetics , Plant Shoots/growth & development , Plant Shoots/physiology , Plant Shoots/ultrastructure , Plant Somatic Embryogenesis Techniques , Protein Binding
5.
Cryo Letters ; 28(1): 13-22, 2007.
Article in English | MEDLINE | ID: mdl-17369958

ABSTRACT

Cryopreservation is a safe and cost-effective option for long-term germplasm conservation of non-orthodox seed species, such as peach palm (Bactris gasipaes). The objective of the present study was to establish a cryopreservation protocol for peach palm zygotic embryos based on the encapsulation-dehydration technique. After excision, zygotic embryos were encapsulated with 3 percent sodium alginate plus 2 M glycerol and 0.4 M sucrose, and pre-treated or not with 1 M sucrose during 24 h, followed by air-drying. Fresh weight water contents of beads decreased from 83 percent and 87 percent to 18 percent and 20 percent for pre-treated or non-pretreated beads, respectively, after 4 h of dehydration. Sucrose pre-treatment at 1 M caused lower zygotic embryo germination and plantlet height in contrast to non-treated beads. All the variables were statistically influenced by dehydration time. Optimal conditions for recovery of cryopreserved zygotic embryos include encapsulation and dehydration for 4 h in a forced air cabinet to 20 percent water content, followed by rapid freezing in liquid nitrogen (-196 degree C) and rapid thawing at 45 degree C. In these conditions 29 percent of the zygotic embryos germinated in vitro. However, plantlets obtained from dehydrated zygotic embryos had stunted haustoria and lower heights. Histological analysis showed that haustorium cells were large, vacuolated, with few protein bodies. In contrast, small cells with high nucleus:cytoplasm ratio formed the shoot apical meristem of the embryos, which were the cell types with favorable characteristics for survival after exposure to liquid nitrogen. Plantlets were successfully acclimatized and showed 41+/-9 percent and 88+/-4 percent survival levels after 12 weeks of acclimatization from cryopreserved and non-cryopreserved treatments, respectively.


Subject(s)
Acclimatization , Arecaceae/growth & development , Cryopreservation/methods , Seeds/growth & development , Culture Techniques , Embryo Culture Techniques , Germination , Water
SELECTION OF CITATIONS
SEARCH DETAIL
...