Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 235
Filter
1.
Antiviral Res ; 227: 105922, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38825018

ABSTRACT

Hepatitis E is an underestimated disease, leading to estimated 20 million infections and up to 70,000 deaths annually. Infections are mostly asymptomatic, but can reach mortality rates up to 25% in pregnant women or become chronic in immunocompromised patients. Hepatitis E virus (HEV) infection have been associated with a range of extrahepatic manifestations, including a spectrum of neurological symptoms. Current therapy options are limited to non-specific antivirals like ribavirin, but recently, repurposed viral polymerase inhibitors like sofosbuvir and NITD008 were described to inhibit HEV replication. Here, we evaluated the efficacy of these drugs in various neuronal-derived cell lines to determine their potency outside the liver. Our findings indicate that both drugs, especially sofosbuvir, exhibited reduced efficacy in neuronal cells compared to hepatic cells. These results should be taken into account in the development of direct-acting antivirals for HEV and their potency at extrahepatic replication sites.

2.
Nat Commun ; 15(1): 4855, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38844458

ABSTRACT

Hepatitis E virus (HEV) is a long-neglected RNA virus and the major causative agent of acute viral hepatitis in humans. Recent data suggest that HEV has a very heterogeneous hypervariable region (HVR), which can tolerate major genomic rearrangements. In this study, we identify insertions of previously undescribed sequence snippets in serum samples of a ribavirin treatment failure patient. These insertions increase viral replication while not affecting sensitivity towards ribavirin in a subgenomic replicon assay. All insertions contain a predicted nuclear localization sequence and alanine scanning mutagenesis of lysine residues in the HVR influences viral replication. Sequential replacement of lysine residues additionally alters intracellular localization in a fluorescence dye-coupled construct. Furthermore, distinct sequence patterns outside the HVR are identified as viral determinants that recapitulate the enhancing effect. In conclusion, patient-derived insertions can increase HEV replication and synergistically acting viral determinants in and outside the HVR are described. These results will help to understand the underlying principles of viral adaptation by viral- and host-sequence snatching during the clinical course of infection.


Subject(s)
Hepatitis E virus , Hepatitis E , Ribavirin , Virus Replication , Virus Replication/genetics , Hepatitis E virus/genetics , Hepatitis E virus/physiology , Hepatitis E virus/drug effects , Humans , Hepatitis E/virology , Hepatitis E/drug therapy , Ribavirin/pharmacology , Mutagenesis, Insertional , Antiviral Agents/pharmacology , RNA, Viral/genetics , Genome, Viral , Replicon/genetics
3.
Hepatology ; 2024 May 10.
Article in English | MEDLINE | ID: mdl-38728662

ABSTRACT

BACKGROUND AND AIMS: The hepatitis E virus (HEV) is estimated to be responsible for 70,000 deaths annually, yet therapy options remain limited. In the pursuit of effective antiviral therapies, targeting viral entry holds promise and has proven effective for other viruses. However, the precise mechanisms and host factors required during HEV entry remain unclear. Cellular proteases have emerged as host factors required for viral surface protein activation and productive cell entry by many viruses. Hence, we investigated the functional requirement and therapeutic potentials of cellular proteases during HEV infection. APPROACH AND RESULTS: Using our established HEV cell culture model and subgenomic HEV replicons, we found that blocking lysosomal cathepsins (CTS) with small molecule inhibitors, impedes HEV infection without affecting replication. Most importantly, the pan-cathepsin inhibitor K11777 suppressed HEV infections with an EC50 of ~ 0.01 nM. Inhibition by K11777, devoid of notable toxicity in hepatoma cells, was also observed in HepaRG and primary human hepatocytes. Furthermore, through time-of-addition and RNAscope experiments, we confirmed that HEV entry is blocked by inhibition of cathepsins. Cathepsin L (CTSL) knockout cells were less permissive to HEV, suggesting that CTSL is critical for HEV infection. Finally, we observed cleavage of the glycosylated ORF2 protein and virus particles by recombinant CTSL. CONCLUSIONS: In summary, our study highlights the pivotal role of lysosomal cathepsins, especially CTSL, in the HEV entry process. The profound anti-HEV efficacy of the pan-cathepsin inhibitor, K11777, especially with its notable safety profile in primary cells, further underscores its potential as a therapeutic candidate.

5.
Proc Natl Acad Sci U S A ; 121(23): e2407437121, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38814864

ABSTRACT

The accessory protease transmembrane protease serine 2 (TMPRSS2) enhances severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) uptake into ACE2-expressing cells, although how increased entry impacts downstream viral and host processes remains unclear. To investigate this in more detail, we performed infection assays in engineered cells promoting ACE2-mediated entry with and without TMPRSS2 coexpression. Electron microscopy and inhibitor experiments indicated TMPRSS2-mediated cell entry was associated with increased virion internalization into endosomes, and partially dependent upon clathrin-mediated endocytosis. TMPRSS2 increased panvariant uptake efficiency and enhanced early rates of virus replication, transcription, and secretion, with variant-specific profiles observed. On the host side, transcriptional profiling confirmed the magnitude of infection-induced antiviral and proinflammatory responses were linked to uptake efficiency, with TMPRSS2-assisted entry boosting early antiviral responses. In addition, TMPRSS2-enhanced infections increased rates of cytopathology, apoptosis, and necrosis and modulated virus secretion kinetics in a variant-specific manner. On the virus side, convergent signatures of cell-uptake-dependent innate immune induction were recorded in viral genomes, manifesting as switches in dominant coupled Nsp3 residues whose frequencies were correlated to the magnitude of the cellular response to infection. Experimentally, we demonstrated that selected Nsp3 mutations conferred enhanced interferon antagonism. More broadly, we show that TMPRSS2 orthologues from evolutionarily diverse mammals facilitate panvariant enhancement of cell uptake. In summary, our study uncovers previously unreported associations, linking cell entry efficiency to innate immune activation kinetics, cell death rates, virus secretion dynamics, and convergent selection of viral mutations. These data expand our understanding of TMPRSS2's role in the SARS-CoV-2 life cycle and confirm its broader significance in zoonotic reservoirs and animal models.


Subject(s)
COVID-19 , Immunity, Innate , SARS-CoV-2 , Serine Endopeptidases , Virus Internalization , SARS-CoV-2/immunology , SARS-CoV-2/physiology , SARS-CoV-2/metabolism , Humans , Serine Endopeptidases/metabolism , Serine Endopeptidases/genetics , COVID-19/virology , COVID-19/immunology , COVID-19/metabolism , Angiotensin-Converting Enzyme 2/metabolism , Angiotensin-Converting Enzyme 2/genetics , Virus Replication , Animals , Endocytosis , HEK293 Cells , Chlorocebus aethiops , Cytology
7.
Emerg Infect Dis ; 30(5): 934-940, 2024 May.
Article in English | MEDLINE | ID: mdl-38666600

ABSTRACT

To determine the kinetics of hepatitis E virus (HEV) in asymptomatic persons and to evaluate viral load doubling time and half-life, we retrospectively tested samples retained from 32 HEV RNA-positive asymptomatic blood donors in Germany. Close-meshed monitoring of viral load and seroconversion in intervals of ≈4 days provided more information about the kinetics of asymptomatic HEV infections. We determined that a typical median infection began with PCR-detectable viremia at 36 days and a maximum viral load of 2.0 × 104 IU/mL. Viremia doubled in 2.4 days and had a half-life of 1.6 days. HEV IgM started to rise on about day 33 and peaked on day 36; IgG started to rise on about day 32 and peaked on day 53. Although HEV IgG titers remained stable, IgM titers became undetectable in 40% of donors. Knowledge of the dynamics of HEV viremia is useful for assessing the risk for transfusion-transmitted hepatitis E.


Subject(s)
Blood Donors , Hepatitis E virus , Hepatitis E , RNA, Viral , Viral Load , Viremia , Humans , Hepatitis E/epidemiology , Hepatitis E/virology , Hepatitis E virus/genetics , Hepatitis E virus/immunology , Male , Adult , Immunoglobulin M/blood , Female , Immunoglobulin G/blood , Kinetics , Middle Aged , Asymptomatic Infections/epidemiology , Retrospective Studies , Hepatitis Antibodies/blood , Germany/epidemiology , Young Adult
8.
Curr Opin Microbiol ; 79: 102474, 2024 Apr 13.
Article in English | MEDLINE | ID: mdl-38615394

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019, contributes to neurological pathologies in nearly 30% of patients, extending beyond respiratory symptoms. These manifestations encompass disorders of both the peripheral and central nervous systems, causing among others cerebrovascular issues and psychiatric manifestations during the acute and/or post-acute infection phases. Despite ongoing research, uncertainties persist about the precise mechanism the virus uses to infiltrate the central nervous system and the involved entry portals. This review discusses the potential entry routes, including hematogenous and anterograde transport. Furthermore, we explore variations in neurotropism, neurovirulence, and neurological manifestations among pandemic-associated variants of concern. In conclusion, SARS-CoV-2 can infect numerous cells within the peripheral and central nervous system, provoke inflammatory responses, and induce neuropathological changes.

9.
J Appl Microbiol ; 135(3)2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38439676

ABSTRACT

AIMS: We aimed to develop a method to assess the virucidal performance of domestic laundry in a lab-scale washing machine (Rotawash) based on EN 17658. METHODS AND RESULTS: For method development, virus recovery was investigated after drying on cotton carriers for three test viruses murine norovirus (MNV), modified vaccinia virus Ankara (MVA), and bovine coronavirus (BCoV), followed by washing simulations in flasks and Rotawash. MNV and MVA demonstrated sufficient recovery from carriers after drying and washing (up to 40°C and 60 min). BCoV exhibited lower recovery, indicating less relevance as a test virus. Rotawash efficacy tests conducted with MNV, a resistant, non-enveloped virus, showed limited efficacy of a bleach-free detergent, aligning with results from a domestic washing machine. Rotawash washes achieved higher reductions in infectious virus titers than suspension tests, indicating the role of washing mechanics in virus removal. CONCLUSIONS: This study established a practical method to test the virucidal efficacy of laundry detergents in Rotawash, simulating domestic washing.


Subject(s)
Detergents , Norovirus , Cattle , Animals , Mice , Detergents/pharmacology , Textiles
10.
JHEP Rep ; 6(3): 100989, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38434938

ABSTRACT

Background & Aims: In the absence of a hepatitis E virus (HEV)-specific antiviral treatment, sofosbuvir has recently been shown to have antiviral activity against HEV in vivo. However, a variant, A1343V, that is strongly associated with viral relapse impedes treatment success. In this study, we investigated the occurrence of variants during sofosbuvir and ribavirin treatment in vivo and assessed the sensitivity of resistance-associated variants to concurrent treatment in cell culture. Methods: Two patients with chronic HEV infection that did not clear infection under ribavirin treatment were subsequently treated with a combination of sofosbuvir and ribavirin. We determined response to treatment by measuring liver enzymes and viral load in blood and stool. Moreover, we analyzed viral evolution using polymerase-targeted high-throughput sequencing and assessed replication fitness of resistance-associated variants using a HEV replicon system. Results: Combination treatment was successful in decreasing viral load towards the limit of quantification. However, during treatment sustained virological response was not achieved. Variants associated with sofosbuvir or ribavirin treatment emerged during treatment, including A1343V and G1634R. Moreover, A1343V, as a single or double mutation with G1634R, was associated with sofosbuvir resistance during concomitant treatment in vitro. Conclusions: These results highlight the importance of variant profiling during antiviral treatment of patients with chronic infection. Understanding how intra-host viral evolution impedes treatment success will help guide the design of next-generation antivirals. Impact and implications: The lack of hepatitis E virus (HEV)-specific antivirals to treat chronic infection remains a serious health burden. Although ribavirin, interferon and sofosbuvir have been reported as anti-HEV drugs, not all patients are eligible for treatment or clear infection, since resistant-associated variants can rapidly emerge. In this study, we analyzed the efficacy of sofosbuvir and ribavirin combination treatment in terms of HEV suppression, the emergence of resistance-associated variants and their ability to escape treatment inhibition in vitro. Our results provide novel insights into evolutionary dynamics of HEV during treatment and thus will help guide the design of next-generation antivirals.

11.
J Virol ; 98(3): e0192123, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38319104

ABSTRACT

Hepatitis C virus (HCV) infection progresses to chronicity in the majority of infected individuals. Its high intra-host genetic variability enables HCV to evade the continuous selection pressure exerted by the host, contributing to persistent infection. Utilizing a cell culture-adapted HCV population (p100pop) which exhibits increased replicative capacity in various liver cell lines, this study investigated virus and host determinants that underlie enhanced viral fitness. Characterization of a panel of molecular p100 clones revealed that cell culture adaptive mutations optimize a range of virus-host interactions, resulting in expanded cell tropism, altered dependence on the cellular co-factor micro-RNA 122 and increased rates of virus spread. On the host side, comparative transcriptional profiling of hepatoma cells infected either with p100pop or its progenitor virus revealed that enhanced replicative fitness correlated with activation of endoplasmic reticulum stress signaling and the unfolded protein response. In contrast, infection of primary human hepatocytes with p100pop led to a mild attenuation of virion production which correlated with a greater induction of cell-intrinsic antiviral defense responses. In summary, long-term passage experiments in cells where selective pressure from innate immunity is lacking improves multiple virus-host interactions, enhancing HCV replicative fitness. However, this study further indicates that HCV has evolved to replicate at low levels in primary human hepatocytes to minimize innate immune activation, highlighting that an optimal balance between replicative fitness and innate immune induction is key to establish persistence. IMPORTANCE: Hepatitis C virus (HCV) infection remains a global health burden with 58 million people currently chronically infected. However, the detailed molecular mechanisms that underly persistence are incompletely defined. We utilized a long-term cell culture-adapted HCV, exhibiting enhanced replicative fitness in different human liver cell lines, in order to identify molecular principles by which HCV optimizes its replication fitness. Our experimental data revealed that cell culture adaptive mutations confer changes in the host response and usage of various host factors. The latter allows functional flexibility at different stages of the viral replication cycle. However, increased replicative fitness resulted in an increased activation of the innate immune system, which likely poses boundary for functional variation in authentic hepatocytes, explaining the observed attenuation of the adapted virus population in primary hepatocytes.


Subject(s)
Genetic Fitness , Hepacivirus , Hepatocytes , Host Microbial Interactions , Immunity, Innate , Mutation , Humans , Cells, Cultured , Endoplasmic Reticulum Stress , Genetic Fitness/genetics , Genetic Fitness/immunology , Hepacivirus/genetics , Hepacivirus/growth & development , Hepacivirus/immunology , Hepacivirus/physiology , Hepatitis C/immunology , Hepatitis C/virology , Hepatocytes/immunology , Hepatocytes/virology , Host Microbial Interactions/immunology , MicroRNAs/metabolism , Serial Passage , Unfolded Protein Response , Viral Tropism , Virion/growth & development , Virion/metabolism , Virus Replication/genetics , Virus Replication/immunology
12.
Liver Int ; 44(3): 637-643, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38291853

ABSTRACT

Hepatitis E virus (HEV) is prevalent worldwide and can cause persistent infection with severe morbidity. Antiviral treatment approaches can lead to the emergence of viral variants encoding escape mutations that may impede viral clearance. The frequency of these variants remains unknown in the human population as well as environment due to limited comprehensive data on HEV diversity. In this study, we investigated the HEV prevalence and diversity of circulating variants in environmental samples, that is, wastewater and rivers from North-Rhine Westphalia, Germany. HEV prevalence could be determined with 73% of samples tested positive for viral RNA via qRT-PCR. Using high-throughput sequencing, we were able to assess the overall genetic diversity in these samples and identified the presence of clinically relevant variants associated with drug resistance. In summary, monitoring variants from environmental samples could provide valuable insights into estimating HEV prevalence and identifying circulating variants that can impact treatment outcome.


Subject(s)
Hepatitis E virus , Hepatitis E , Humans , Hepatitis E virus/genetics , Wastewater , Hepatitis E/diagnosis , Hepatitis E/drug therapy , Hepatitis E/epidemiology , Phylogeny , Prevalence , RNA, Viral/genetics
13.
J Med Chem ; 67(1): 289-321, 2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38127656

ABSTRACT

The synthesis of a library of halogenated rocaglate derivatives belonging to the flavagline class of natural products, of which silvestrol is the most prominent example, is reported. Their antiviral activity and cytotoxicity profile against a wide range of pathogenic viruses, including hepatitis E, Chikungunya, Rift Valley Fever virus and SARS-CoV-2, were determined. The incorporation of halogen substituents at positions 4', 6 and 8 was shown to have a significant effect on the antiviral activity of rocaglates, some of which even showed enhanced activity compared to CR-31-B and silvestrol.


Subject(s)
Chikungunya Fever , Hepatitis E virus , Viruses , Animals , Antiviral Agents/pharmacology
14.
bioRxiv ; 2023 Nov 22.
Article in English | MEDLINE | ID: mdl-38045248

ABSTRACT

Hepatitis C virus (HCV) infection progresses to chronicity in the majority of infected individuals. Its high intra-host genetic variability enables HCV to evade the continuous selection pressure exerted by the host, contributing to persistent infection. Utilizing a cell culture adapted HCV population (p100pop) which exhibits increased replicative capacity in various liver cell lines, this study investigated virus and host determinants which underlie enhanced viral fitness. Characterization of a panel of molecular p100 clones revealed that cell culture adaptive mutations optimize a range of virus-host interactions, resulting in expanded cell tropism, altered dependence on the cellular co-factor micro-RNA 122 and increased rates of virus spread. On the host side, comparative transcriptional profiling of hepatoma cells infected either with p100pop or its progenitor virus revealed that enhanced replicative fitness correlated with activation of endoplasmic reticulum stress signaling and the unfolded protein response. In contrast, infection of primary human hepatocytes with p100pop led to a mild attenuation of virion production which correlated with a greater induction of cell-intrinsic antiviral defense responses. In summary, long-term passage experiments in cells where selective pressure from innate immunity is lacking improves multiple virus-host interactions, enhancing HCV replicative fitness. However, this study further indicates that HCV has evolved to replicate at low levels in primary human hepatocytes to minimize innate immune activation, highlighting that an optimal balance between replicative fitness and innate immune induction is key to establishing persistence.

15.
J Med Virol ; 95(12): e29312, 2023 12.
Article in English | MEDLINE | ID: mdl-38100621

ABSTRACT

For the prevention of infectious diseases, knowledge about potential transmission routes is essential. Pathogens can be transmitted directly (i.e. respiratory droplets, hand-to-hand contact) or indirectly via contaminated surfaces (fomites). In particular, frequently touched objects/surfaces may serve as transmission vehicles for different clinically relevant bacterial, fungal, and viral pathogens. Banknotes and coins offer ample surface area and are frequently exchanged between individuals. Consequently, many concerns have been raised in the recent past, that banknotes and coins could serve as vectors for the transmission of disease-causing microorganisms. This review summarizes the latest research on the potential of paper currency and coins to serve as sources of pathogenic viral, bacterial, and fungal agents. In contrast to the current perception of banknotes and coins as important transmission vehicles, current evidence suggests, that banknotes and coins do not pose a particular risk of pathogen infection for the public.


Subject(s)
Fomites , Numismatics , Humans , Bacteria/genetics
17.
Viruses ; 15(11)2023 Oct 30.
Article in English | MEDLINE | ID: mdl-38005856

ABSTRACT

Viral disinfection is important for medical facilities, the food industry, and the veterinary field, especially in terms of controlling virus outbreaks. Therefore, standardized methods and activity levels are available for these areas. Usually, disinfectants used in these areas are characterized by their activity against test organisms (i.e., viruses, bacteria, and/or yeasts). This activity is usually determined using a suspension test in which the test organism is incubated with the respective disinfectant in solution to assess its bactericidal, yeasticidal, or virucidal activity. In addition, carrier methods that more closely reflect real-world applications have been developed, in which microorganisms are applied to the surface of a carrier (e.g., stainless steel frosted glass, or polyvinyl chloride (PVC)) and then dried. However, to date, no standardized methods have become available for addressing genetically modified vectors or disinfection-resistant oncolytic viruses such as the H1-parvovirus. Particularly, such non-enveloped viruses, which are highly resistant to disinfectants, are not taken into account in European standards. This article proposes a new activity claim known as "virucidal activity PLUS", summarizes the available methods for evaluating the virucidal activity of chemical disinfectants against genetically modified organisms (GMOs) using current European standards, including the activity against highly resistant parvoviridae such as the adeno-associated virus (AAV), and provides guidance on the selection of disinfectants for pharmaceutical manufacturers, laboratories, and clinical users.


Subject(s)
Disinfectants , Parvoviridae Infections , Parvovirus , Viruses , Humans , Disinfectants/pharmacology , Disinfection/methods , Viruses/genetics
18.
Can J Vet Res ; 87(3): 169-175, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37397641

ABSTRACT

Equine parvovirus-hepatitis (EqPV-H) was first reported from the serum and liver tissue of a horse diagnosed with Theiler's disease in the United States in 2018. Theiler's disease, also known as equine serum hepatitis, is a severe hepatitis with fulminant hepatic necrosis. The disease has most frequently been reported following the administration of equine-origin biological products; however, it has also been reported in in-contact horses with no prior biologic administration. EqPV-H has been detected in clinically healthy horses in North America (USA, Canada), Europe (Germany, Austria, Slovenia), Asia (China, South Korea), and South America (Brazil). Previous prevalence studies conducted worldwide have shown the presence of EqPV-H DNA in serum or plasma ranging from 3.2 to 19.8%. This study investigated the prevalence of EqPV-H DNA in 170 healthy broodmares of various breeds located on 37 farms in southern Ontario, Canada. The occurrence of EqPV-H infection was determined by quantitative PCR for EqPV-H DNA in serum samples. The effects of age, breed, season, pregnancy status, and equine herpesvirus-1 (EHV-1) vaccination history on EqPV-H status were also investigated. There was a prevalence of 15.9% (27/170) with viral loads of EqPV-H ranging from detectable to 2900 copies/mL. Statistical analysis showed that increasing age was a significant factor in the detection of EqPV-H DNA. Neither breed, season, pregnancy status, nor EHV-1 vaccination history was significant in predicting EqPV-H infection status.


L'hépatite à parvovirus équin (EqPV-H) a été signalée pour la première fois à partir du sérum et du tissu hépatique d'un cheval diagnostiqué avec la maladie de Theiler aux États-Unis en 2018. La maladie de Theiler, également connue sous le nom d'hépatite sérique équine, est une hépatite sévère avec nécrose hépatique fulminante. La maladie a été le plus souvent rapportée à la suite de l'administration de produits biologiques d'origine équine; cependant, il a également été signalé chez des chevaux en contact sans administration préalable de produit biologique. EqPV-H a été détecté chez des chevaux cliniquement sains en Amérique du Nord (États-Unis, Canada), en Europe (Allemagne, Autriche, Slovénie), en Asie (Chine, Corée du Sud) et en Amérique du Sud (Brésil). Des études de prévalence antérieures menées dans le monde entier ont montré la présence d'ADN EqPV-H dans le sérum ou le plasma allant de 3,2 à 19,8 %. Cette étude a examiné la prévalence de l'ADN EqPV-H chez 170 poulinières en bonne santé de différentes races situées dans 37 fermes du sud de l'Ontario, au Canada. La survenue d'une infection par EqPV-H a été déterminée par PCR quantitative pour l'ADN d'EqPV-H dans des échantillons de sérum. Les effets de l'âge, de la race, de la saison, de l'état de grossesse et des antécédents de vaccination contre l'herpèsvirus équin-1 (EHV-1) sur le statut EqPV-H ont également été étudiés. Il y avait une prévalence de 15,9 % (27/170) avec des charges virales d'EqPV-H allant de détectable à 2900 copies/mL. L'analyse statistique a montré que l'augmentation de l'âge était un facteur significatif dans la détection de l'ADN EqPV-H. Ni la race, ni la saison, ni l'état de grossesse, ni les antécédents de vaccination contre l'EHV-1 n'étaient significatifs pour prédire l'état de l'infection par l'EqPV-H.(Traduit par Docteur Serge Messier).


Subject(s)
Hepatitis, Viral, Animal , Hepatitis , Herpesviridae Infections , Horse Diseases , Parvoviridae Infections , Parvovirus , Animals , Horses , Pregnancy , Female , Parvovirus/genetics , Parvoviridae Infections/epidemiology , Parvoviridae Infections/veterinary , Ontario/epidemiology , Prevalence , Hepatitis, Viral, Animal/epidemiology , Horse Diseases/epidemiology , Herpesviridae Infections/veterinary
19.
Antiviral Res ; 217: 105690, 2023 09.
Article in English | MEDLINE | ID: mdl-37517633

ABSTRACT

Hepatitis E virus (HEV) usually causes a self-limiting disease, but especially immunocompromised individuals are at risk to develop a chronic and severe course of infection. Janus kinase (JAK) inhibitors (JAKi) are a novel drug class for the treatment of autoimmune inflammatory rheumatic disease (AIRD). As JAKs play a key role in innate immunity, viral infections and reactivations are frequently reported during JAKi treatment in AIRD patients. The aim of this study was to characterize the influence of JAKis on HEV replication. To this end, we evaluated liver enzymes of an AIRD patient under JAKi therapy with hepatitis E. Further, experiments with HEV (Kernow-C1 p6) were performed by infection of primary human hepatocytes (PHHs) followed by immunofluorescence staining of viral markers and transcriptomic analysis. Infection experiments in PHHs displayed an up to 50-fold increase of progeny virus production during JAKi treatment and transcriptomic analysis revealed induction of antiviral programs during infection. Upregulation of interferon-stimulated genes (ISG) was perturbed in the presence of JAKis, concomitant with elevated HEV RNA levels. The obtained results suggest that therapeutic JAK inhibition increases HEV replication by modulating the HEV-triggered immune response. Therefore, JAKi treatment and the occurrence of elevated liver enzymes requires a monitoring of potential HEV infections.


Subject(s)
Hepatitis E virus , Hepatitis E , Humans , Hepatitis E virus/genetics , Janus Kinases , Interferons/pharmacology , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Virus Replication
20.
Hepatology ; 78(6): 1882-1895, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37334496

ABSTRACT

BACKGROUND AND AIMS: Chronic HEV infections remain a serious problem in immunocompromised patients, as specifically approved antiviral drugs are unavailable. In 2020, a 24-week multicenter phase II pilot trial was carried out, evaluating the nucleotide analog sofosbuvir by treating nine chronically HEV-infected patients with sofosbuvir (Trial Number NCT03282474). During the study, antiviral therapy reduced virus RNA levels initially but did not lead to a sustained virologic response. Here, we characterize the changes in HEV intrahost populations during sofosbuvir treatment to identify the emergence of treatment-associated variants. APPROACH AND RESULTS: We performed high-throughput sequencing on RNA-dependent RNA polymerase sequences to characterize viral population dynamics in study participants. Subsequently, we used an HEV-based reporter replicon system to investigate sofosbuvir sensitivity in high-frequency variants. Most patients had heterogenous HEV populations, suggesting high adaptability to treatment-related selection pressures. We identified numerous amino acid alterations emerging during treatment and found that the EC 50 of patient-derived replicon constructs was up to ~12-fold higher than the wild-type control, suggesting that variants associated with lower drug sensitivity were selected during sofosbuvir treatment. In particular, a single amino acid substitution (A1343V) in the finger domain of ORF1 could reduce susceptibility to sofosbuvir significantly in 8 of 9 patients. CONCLUSIONS: In conclusion, viral population dynamics played a critical role during antiviral treatment. High population diversity during sofosbuvir treatment led to the selection of variants (especially A1343V) with lower sensitivity to the drug, uncovering a novel mechanism of resistance-associated variants during sofosbuvir treatment.


Subject(s)
Hepatitis E , Sofosbuvir , Humans , Sofosbuvir/pharmacology , Sofosbuvir/therapeutic use , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Hepatitis E/drug therapy , Sustained Virologic Response , Drug Therapy, Combination , Hepacivirus/genetics , Genotype , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...