Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Sci Total Environ ; 946: 174310, 2024 Oct 10.
Article in English | MEDLINE | ID: mdl-38942317

ABSTRACT

Micropollutant removal from effluent of conventional wastewater treatment has recently become one of the most discussed topics in the design and operation of wastewater treatment plants (WWTPs). This is due to the need to add a post-treatment step to the conventional processes to comply with stricter quality standards for effluents as outlined in the revised Urban Wastewater Treatment Directive (UWWTD). The adoption of on-site or decentralized greywater (GW) treatment in sustainable buildings using vertical-flow constructed wetlands (VFCWs) is a promising direction. It represents an interesting alternative for the removal of micropollutants at the source of pollution, such as personal care products (PCPs) and some pharmaceuticals which are mainly present in this wastewater fraction. Additionally, the treated greywater could be used in households' water services which do not require potable water quality, thus saving drinking water. In this context, this work compares the results of micropollutant removal from projects using VFCWs as a polishing step of WWTPs effluent, as a centralized solution, to the results from a decentralized GW treatment. The results show that VFCWs can remove the investigated micropollutants (Diclofenac and DEET) with an efficiency of >90 %, in both centralized and decentralized treatments. The admixture biochar from plant residues and from cellulose-toilet paper proved to be a promising substitute for the mineral zeolite when mixed with sand to remove PCPs from GW and, therefore, a circular economy concept can be applied to this technology.

2.
Water Res ; 255: 121525, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38569358

ABSTRACT

This work introduces a new sustainable alternative of powdered activated carbon (PAC) - magnetically harvestable and reusable after regeneration via inductive heating - for the adsorptive removal of organic micropollutants (OMP) from secondary wastewater effluents. For this purpose, two commercial PACs - lignite "L" (1187 m2/g) and coconut "C"-based (1524 m2/g) - were modified with magnetic iron oxide following two different synthesis approaches: infiltration ("infiltr") and surface deposition ("depos") route. The resulting magnetic powdered activated carbons (mPAC) and their precursor PACs were fully characterized before application. The iron oxide content of the modified "L" and "C" samples was ∼30 % and ∼20 %, respectively. Iron oxide gives the PAC beneficial magnetic properties for easy magnetic separation and simultaneously acts as an inductively heatable agent for the carbon regeneration. The infiltrated samples displayed better inductive heating performance and regeneration than their deposited counterparts. Tests with real wastewater showed fast adsorption kinetics of the organic load following the pseudo-second-order kinetic model. Adsorption isotherms were compliant with the Freundlich isotherm model. Sample "L-infiltr" had the best overall adsorption performance throughout 5 reuse cycles when intermediately inductively regenerated (<3 % drop in organics removal per cycle with intermediate regeneration vs. ∼10 % drop per cycle without regeneration). The treated supernatant was additionally tested for 31 representative organic micropollutants and their transformation products (pharmaceuticals, personal care products, industrial chemicals, etc.), where 26 OMPs had consistently high removal (>85 %) throughout 5 cycles with intermediate regeneration and for 28 OMPs the total adsorption efficiency dropped by <5 % after 5 cycles.

3.
J Environ Manage ; 352: 119960, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38198838

ABSTRACT

Nutrient recovery from wastewater treatment plants (WWTPs) for hydroponic cultivation holds promise for closing the nutrient loop and meeting rising food demands. However, most studies focus on solid products for soil-based agriculture, thus raising questions about their suitability for hydroponics. In this study, we address these questions by performing the first in-depth assessment of the extent to which state-of-the-art nutrient recovery processes can generate useful products for hydroponic application. Our results indicate that less than 11.5% of the required nutrients for crops grown hydroponically can currently be recovered. Potassium nitrate (KNO3), calcium nitrate (Ca(NO3)2), and magnesium sulfate (MgSO4), constituting over 75% of the total nutrient demand for hydroponics, cannot be recovered in appropriate form due to their high solubility, hindering their separated recovery from wastewater. To overcome this challenge, we outline a novel nutrient recovery approach that emphasizes the generation of multi-nutrient concentrates specifically designed to meet the requirements of hydroponic cultivation. Based on a theoretical assessment of nutrient and contaminant flows in a typical municipal WWTP, utilizing a steady-state model, we estimated that this novel approach could potentially supply up to 56% of the nutrient requirements of hydroponic systems. Finally, we outline fundamental design requirements for nutrient recovery systems based on this new approach. Achieving these nutrient recovery potentials could be technically feasible through a combination of activated sludge processes for nitrification, membrane-based desalination processes, and selective removal of interfering NaCl. However, given the limited investigation into such treatment trains, further research is essential to explore viable system designs for effective nutrient recovery for hydroponics.


Subject(s)
Wastewater , Water Purification , Hydroponics , Fertilizers , Nutrients , Water Purification/methods
4.
Nanomaterials (Basel) ; 12(3)2022 Feb 02.
Article in English | MEDLINE | ID: mdl-35159870

ABSTRACT

The zeolite clinoptilolite (CLI) is known to be a very good ion exchanger, as it consists of a three-dimensional structure formed of AlO4- and SiO4 tetrahedral, which are connected by a common oxygen atom. The micropores formed by this structure (with free diameters in the range of 0.40 nm and 0.72 nm) are fine enough to allow cations and water molecules to enter and be exchanged. CLI is a suitable, inexpensive, and globally available material for removing ammonium from highly-concentrated wastewater and is proven to be selective in ammonium uptake and regeneration since no effect of the provenance of the ammonium (matrix-free NH4Cl solution or sludge water) could be found. However, regeneration of the clinoptilolite is necessary to recover the adsorbed ammonium for further use and restore its capability for ion exchange. Within this work, the method by which clinoptilolite, loaded with ammonium (q = 8.1-16.6 mg/g) from different sludge waters and ammonium chloride solution, can be regenerated to yield a stoichiometric ammonium sulfate solution (ASS), that could be used, e.g., as a fertilizer, was investigated. A regeneration solution containing Na2SO4 (0.25 n(Na2SO4)/n(NH4+ads)) with a varying NaOH ratio (0-2.14 n(NaOH)/n(NH4+ads)) was tested. To obtain a high ammonium concentration in the eluate, a large mass fraction ω of 284 g/kg of CLI in the regeneration solution was applied. The effects of different ammonium loads, different origins of the ammonium, and residual moisture on the necessary components of the regeneration solution, in which an ASS is obtained within a contact time of 10 min at 22 °C, were studied. A stoichiometric ASS from CLI loaded up to a maximum of 13.5 mg/g was obtained with a mixture of 0.25 n(Na2SO4)/n(NH4+ads) together with 0.8-1.0 n(NaOH)/n(NH4+ads) for dry CLI, and 0.75 n(NaOH)/n(NH4+ads) for CLI with residual moisture.

5.
Water Sci Technol ; 82(8): 1509-1522, 2020 Oct.
Article in English | MEDLINE | ID: mdl-33107846

ABSTRACT

Systematic investigations of the acidic dissolution of phosphorus (P), aluminum (Al), iron (Fe), and calcium (Ca) from Al-containing tertiary sludge were carried out in this work. The results were compared with the dissolution behavior of Al-containing anaerobically digested sludge to evaluate the P recovery potential in the form of struvite from tertiary sludge versus anaerobically digested sludge. Additional investigations of synthetically produced Al sludge served as a comparison for the dissolution behavior of P and Al without the influence of other contaminants (metals, biomass). In addition, the acid consumption was analyzed as a function of the target pH during the dissolution. The dissolution efficiency of ortho-phosphate in tertiary and anaerobically digested sludge after acid treatment at pH 2 was ∼90%. The dissolution efficiency of Al and Ca in tertiary sludge was also ∼90% at pH 2, while the release efficiency of Al and Ca in anaerobically digested sludge was lower, ∼70% at pH 2. In tertiary sludge, about 75% of Fe was found dissolved at pH 2, whereas in anaerobically digested sludge this value was higher, ∼90%. Based on the experimental data, it can be concluded that significant dissolution of phosphorus from Al-containing tertiary sludge can take place at pH < 3. The highest sulfuric acid consumption for P dissolution was observed in the case of tertiary sludge at pH 2.


Subject(s)
Phosphorus , Sewage , Aluminum , Phosphates , Struvite
6.
Molecules ; 26(1)2020 Dec 29.
Article in English | MEDLINE | ID: mdl-33383775

ABSTRACT

Sludge water (SW) arising from the dewatering of anaerobic digested sludge causes high back loads of ammonium, leading to high stress (inhibition of the activity of microorganisms by an oversupply of nitrogen compounds (substrate inhibition)) for wastewater treatment plants (WWTP). On the other hand, ammonium is a valuable resource to substitute ammonia from the energy intensive Haber-Bosch process for fertilizer production. Within this work, it was investigated to what extent and under which conditions Carpathian clinoptilolite powder (CCP 20) can be used to remove ammonium from SW and to recover it. Two different SW, originating from municipal WWTPs were investigated (SW1: c0 = 967 mg/L NH4-N, municipal wastewater; SW2: c0 = 718-927 mg/L NH4-N, large industrial wastewater share). The highest loading was achieved at 307 K with 16.1 mg/g (SW1) and 15.3 mg/g (SW2) at 295 K. Kinetic studies with different specific dosages (0.05 gCLI/mgNH4-N), temperatures (283-307 K) and pre-loaded CCP 20 (0-11.4 mg/g) were conducted. At a higher temperature a higher load was achieved. Already after 30 min contact time, regardless of the sludge water, a high load up to 7.15 mg/g at 307 K was reached, achieving equilibrium after 120 min. Pre-loaded sorbent could be further loaded with ammonium when it was recontacted with the SW.


Subject(s)
Ammonium Compounds/isolation & purification , Sewage/analysis , Water Pollutants, Chemical/isolation & purification , Water Purification/methods , Zeolites/chemistry , Adsorption , Kinetics , Temperature
7.
Water Sci Technol ; 79(8): 1605-1615, 2019 Apr.
Article in English | MEDLINE | ID: mdl-31169519

ABSTRACT

Source separation has thus far been addressed mainly within the context of decentralization in new development areas; centralized approaches for resource-oriented sanitation remained, however, largely disregarded. By means of inhabitant-specific load and volume flow balances, based on typical reference values for municipal wastewater in Germany, a stepwise transition towards on-site greywater recycling was investigated for a model wastewater treatment plant (WWTP). Up to 17% transition (separation of greywater from 17% of the total inhabitants), greywater separation was proven to benefit plant operation by reducing energy consumption for aeration. From 17% transition onwards, however, unfavorable carbon to nitrogen ratios (C/N) were reported, as less biodegradable carbon reaches denitrification, thus shifting C/N ratios negatively. Therefore, nitrogen recovery/removal from N-rich sludge sidestreams would be required. At 35% transition, a 50% N recovery from sludge liquor was proven to be sufficient in order to ensure full denitrification; combined with greywater separation, nutrient recovery yielded 14% reduction in power demand for aeration (on the actual state). Additionally, extensive mainstream process changeovers could be avoided by separating N-rich urine alongside greywater from the main wastewater stream. Urine separation was proven to maintain denitrification stability as well as reduce power demand for aeration. The calculations show that, under consideration of specific boundary conditions, existing WWTP can be successfully integrated in transition concepts for resource-oriented sanitation.


Subject(s)
Waste Disposal, Fluid , Wastewater , Denitrification , Germany , Nitrogen , Sewage
8.
Sci Total Environ ; 615: 1176-1191, 2018 Feb 15.
Article in English | MEDLINE | ID: mdl-29751423

ABSTRACT

The worldwide increasing consumption of the phosphonates 2-phosphonobutane-1,2,4-tricarboxylic acid [PBTC], 1-hydroxyethane 1,1-diphosphonic acid [HEDP], nitrilotris(methylene phosphonic acid) [NTMP], ethylenediamine tetra(methylene phosphonic acid) [EDTMP] and diethylenetriamine penta(methylene phosphonic acid) [DTPMP] over the past decades put phosphonates into focus of environmental scientists and agencies, as they are increasingly discussed in the context of various environmental problems. The hitherto difficult analysis of phosphonates contributed to the fact that very little is known about their concentrations and behavior in the environment. This work critically reviews the existing literature up to the year 2016 on the potential environmental relevance of phosphonates, their biotic and abiotic degradability, and their removal in wastewater treatment plants (WWTPs). Accordingly, despite their stability against biological degradation, phosphonates can be removed with relatively high efficiency (>80%) in WWTPs operated with chemical phosphate precipitation. In the literature, however, to our knowledge, there is no information as to whether an enhanced biological phosphorus removal alone is sufficient for such high removal rates and whether the achievable phosphonate concentrations in effluents are sufficiently low to prevent eutrophication. It is currently expected that phosphonates, although being complexing agents, do not remobilize heavy metals from sediments in a significant amount since the phosphonate concentrations required for this (>50µg/L) are considerably higher than the concentrations determined in surface waters. Various publications also point out that phosphonates are harmless to a variety of aquatic organisms. Moreover, degradation products thereof such as N-(phosphonomethyl)glycine and aminomethylphosphonic acid are regarded as being particularly critical. Despite their high stability against biological degradation, phosphonates contribute to eutrophication due to abiotic degradation (mainly photolysis). Furthermore, the literature reports on the fact that phosphonates in high concentrations interfere with phosphate precipitation in WWTPs. Thus, it is recommended to remove phosphonates, in particular from industrial wastewaters, before discharging them into water bodies or WWTPs.


Subject(s)
Organophosphonates/analysis , Waste Disposal, Fluid/methods , Wastewater/chemistry , Water Pollutants, Chemical/analysis , Biodegradation, Environmental , Organophosphonates/metabolism , Waste Disposal, Fluid/statistics & numerical data , Wastewater/statistics & numerical data , Water Pollutants, Chemical/metabolism
9.
Bioengineering (Basel) ; 4(2)2017 Jun 06.
Article in English | MEDLINE | ID: mdl-28952533

ABSTRACT

This work describes the production of polyhydroxyalkanoates (PHA) as a side stream process on a municipal waste water treatment plant (WWTP) and a subsequent analysis of the production potential in Germany and the European Union (EU). Therefore, tests with different types of sludge from a WWTP were investigated regarding their volatile fatty acids (VFA) production-potential. Afterwards, primary sludge was used as substrate to test a series of operating conditions (temperature, pH, retention time (RT) and withdrawal (WD)) in order to find suitable settings for a high and stable VFA production. In a second step, various tests regarding a high PHA production and stable PHA composition to determine the influence of substrate concentration, temperature, pH and cycle time of an installed feast/famine-regime were conducted. Experiments with a semi-continuous reactor operation showed that a short RT of 4 days and a small WD of 25% at pH = 6 and around 30 °C is preferable for a high VFA production rate (PR) of 1913 mgVFA/(L×d) and a stable VFA composition. A high PHA production up to 28.4% of cell dry weight (CDW) was reached at lower substrate concentration, 20 °C, neutral pH-value and a 24 h cycle time. A final step a potential analysis, based on the results and detailed data from German waste water treatment plants, showed that the theoretically possible production of biopolymers in Germany amounts to more than 19% of the 2016 worldwide biopolymer production. In addition, a profound estimation regarding the EU showed that in theory about 120% of the worldwide biopolymer production (in 2016) could be produced on European waste water treatment plants.

10.
Water Res ; 122: 345-354, 2017 10 01.
Article in English | MEDLINE | ID: mdl-28618359

ABSTRACT

Phosphonates are an important group of phosphorus-containing compounds due to their increasing industrial use and possible eutrophication potential. This study involves investigations into the methods UV/FeII, Fenton and UV/Fenton for their removal from a pure water matrix and industrial wastewaters. It could be shown that the degradability of phosphonates by UV/FeII (6 kWh/m3) in pure water crucially depended on the pH and was higher the less phosphonate groups a phosphonate contains. The UV/FeII method is recommended in particular for the treatment of concentrates with nitrogen-free phosphonates, only little turbidity and a low content of organic compounds. Using Fenton reagent, the degradation of polyphosphonates was relatively weak in a pure water matrix (<20% transformation to o-PO43-). By means of the Photo-Fenton method (6 kWh/m3), those phosphonates with the smallest numbers of phosphonate groups were easier degraded as well at pH 3.5 in a pure water matrix (o-PO43- formation rates of up to 80%). Despite an incomplete transformation of organically bound phosphorus to o-PO43- with Fenton reagent in an organically highly polluted wastewater (max. 15%), an almost total removal of the total P occurred. The most efficient total P elimination rates were achieved in accordance with the following Fenton implementation: reaction → sludge separation (acidic) → neutralization of the supernatant → sludge separation (neutral). Accordingly, a neutralization directly after the reaction phase led to a lower total P removal extent.


Subject(s)
Wastewater , Ferrous Compounds , Hydrogen Peroxide , Iron , Organophosphonates , Sewage , Ultraviolet Rays , Water Pollutants, Chemical
11.
Water Res ; 109: 77-87, 2017 Feb 01.
Article in English | MEDLINE | ID: mdl-27866105

ABSTRACT

Advanced nanocomposite magnetic particles functionalized with ZnFeZr-adsorbent are developed, characterized and tested for the removal and recovery of phosphate directly from spiked secondary wastewater effluent (∼10 mg/L PO4-P). The phosphate loaded particles can be extracted from the liquid phase via magnetic separation, regenerated in a NaOH solution where phosphate desorption takes place, and reused in numerous cycles. Laboratory experiments demonstrate their reusability and stability in 60 consecutive adsorption/desorption runs where under optimal conditions > 90% total P-recovery efficiency is reached. In addition, pilot tests are performed to verify the proof-of-concept by upscaling the technology and maintain high efficiency of phosphate removal and recovery after treating 1.5 m3 wastewater in 20 cycles. Effluent concentrations <0.05 mg/L PO4-P can be achieved in the treated wastewater. The reclaimed desorption solution is concentrated with phosphate ions through its repetitive application, attaining up to 38-times enrichment (∼380 mg/L PO4-P) compared to the initial concentration in wastewater. The P-rich eluate is used as a source for subsequent precipitation of a solid fertilizer product such as struvite.


Subject(s)
Silicon Dioxide , Wastewater , Adsorption , Phosphates , Struvite
12.
Water Res ; 104: 82-92, 2016 Nov 01.
Article in English | MEDLINE | ID: mdl-27518145

ABSTRACT

To characterise emissions from combined sewer overflows (CSOs) regarding organic micropollutants, a monitoring study was undertaken in an urban catchment in southwest Stuttgart, Germany. The occurrence of 69 organic micropollutants was assessed at one CSO outfall during seven rain events as well as in the sewage network at the influent of the wastewater treatment plant (WWTP) and in the receiving water. Several pollutant groups like pharmaceuticals and personal care products (PPCPs), urban biocides and pesticides, industrial chemicals, organophosphorus flame retardants, plasticisers and polycyclic aromatic hydrocarbons (PAHs) were chosen for analysis. Out of the 69 monitored substances, 60 were detected in CSO discharges. The results of this study show that CSOs represent an important pathway for a wide range of organic micropollutants from wastewater systems to urban receiving waters. For most compounds detected in CSO samples, event mean concentrations varied between the different events in about one order of magnitude range. When comparing CSO concentrations with median wastewater concentrations during dry weather, two main patterns could be observed depending on the source of the pollutant: (i) wastewater is diluted by stormwater; (ii) stormwater is the most important source of a pollutant. Both wastewater and stormwater only play an important role in pollutant concentration for a few compounds. The proportion of stormwater calculated with the conductivity is a suitable indicator for the evaluation of emitted loads of dissolved wastewater pollutants, but not for all compounds. In fact, this study demonstrates that remobilisation of in-sewer deposits contributed from 10% to 65% to emissions of carbamazepine in CSO events. The contribution of stormwater to CSO emitted loads was higher than 90% for all herbicides as well as for PAHs. Regarding the priority substance di(2-ethylhexyl)phthalate (DEHP), this contribution varied between 39% and 85%. The PAH concentrations found along the river indicate environmental risk, especially during rainfall events.


Subject(s)
Environmental Monitoring , Water Pollutants, Chemical , Rivers/chemistry , Sewage/chemistry , Wastewater/chemistry
13.
Environ Int ; 79: 85-105, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25801101

ABSTRACT

Anthropogenic Trace Compounds (ATCs) that continuously grow in numbers and concentrations are an emerging issue for water quality in both natural and technical environments. The complex web of exposure pathways as well as the variety in the chemical structure and potency of ATCs represents immense challenges for future research and policy initiatives. This review summarizes current trends and identifies knowledge gaps in innovative, effective monitoring and management strategies while addressing the research questions concerning ATC occurrence, fate, detection and toxicity. We highlight the progressing sensitivity of chemical analytics and the challenges in harmonization of sampling protocols and methods, as well as the need for ATC indicator substances to enable cross-national valid monitoring routine. Secondly, the status quo in ecotoxicology is described to advocate for a better implementation of long-term tests, to address toxicity on community and environmental as well as on human-health levels, and to adapt various test levels and endpoints. Moreover, we discuss potential sources of ATCs and the current removal efficiency of wastewater treatment plants (WWTPs) to indicate the most effective places and elimination strategies. Knowledge gaps in transport and/or detainment of ATCs through their passage in surface waters and groundwaters are further emphasized in relation to their physico-chemical properties, abiotic conditions and biological interactions in order to highlight fundamental research needs. Finally, we demonstrate the importance and remaining challenges of an appropriate ATC risk assessment since this will greatly assist in identifying the most urgent calls for action, in selecting the most promising measures, and in evaluating the success of implemented management strategies.


Subject(s)
Environmental Monitoring/methods , Trace Elements/analysis , Water Pollutants, Chemical/analysis , Water Pollution, Chemical/analysis , Ecosystem , Humans , Risk Assessment/methods , Trace Elements/toxicity , Water Pollution, Chemical/legislation & jurisprudence , Water Pollution, Chemical/prevention & control
14.
Bioresour Technol ; 148: 270-6, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24055969

ABSTRACT

This work describes the generation of volatile fatty acids (VFAs) as the first step of the polyhydroxyalkanoate (PHA) production cycle. Therefore four different substrates from a municipal waste water treatment plant (WWTP) were investigated regarding high VFA production and stable VFA composition. Due to its highest VFA yield primary sludge was used as substrate to test a series of operating conditions (temperature, pH, retention time (RT) and withdrawal (WD)) in order to find suitable conditions for a stable VFA production. The results demonstrated that although the substrate primary sludge differs in its consistence a stable composition of VFA could be achieved. Experiments with a semi-continuous reactor operation showed that a short RT of 4d and a small WD of 25% at pH=6 and around 30°C is preferable for high VFA mass flow (MF=1913 mg VFA/(Ld)) and a stable VFA composition.


Subject(s)
Cities , Fatty Acids, Volatile/analysis , Polyhydroxyalkanoates/biosynthesis , Wastewater/microbiology , Water Purification , Acids/chemistry , Hydrogen-Ion Concentration , Temperature , Time Factors
15.
Water Res ; 47(15): 5670-7, 2013 Oct 01.
Article in English | MEDLINE | ID: mdl-23863389

ABSTRACT

An innovative nanocomposite material is proposed for phosphate recovery from wastewater using magnetic assistance. Superparamagnetic microparticles modified with layered double hydroxide (LDH) ion exchangers of various compositions act as phosphate adsorbers. Magnetic separation and chemical regeneration of the particles allows their reuse, leading to the successful recovery of phosphate. Based upon the preliminary screening of different LDH ion exchanger modifications for phosphate selectivity and uptake capacity, MgFe-Zr LDH coated magnetic particles were chosen for further characterization and application. The adsorption kinetics of phosphate from municipal wastewater was studied in dependence with particle concentration, contact time and pH. Adsorption isotherms were then determined for the selected particle system. Recovery of phosphate and regeneration of the particles was examined via testing a variety of desorption solutions. Reusability of the particles was demonstrated for 15 adsorption/desorption cycles. Adsorption in the range of 75-97% was achieved in each cycle after 1 h contact time. Phosphate recovery and enrichment was possible through repetitive application of the desorption solution. Finally, a pilot scale experiment was carried out by treating 125 L of wastewater with the particles in five subsequent 25 L batches. Solid-liquid separation on this scale was carried out with a high-gradient magnetic filter (HGMF).


Subject(s)
Hydroxides/chemistry , Phosphates/chemistry , Wastewater/chemistry , Water Pollutants, Chemical/chemistry , Adsorption , Kinetics
SELECTION OF CITATIONS
SEARCH DETAIL
...