Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
1.
Cell Death Dis ; 6: e1592, 2015 Jan 15.
Article in English | MEDLINE | ID: mdl-25590802

ABSTRACT

Pancreatic ductal adenocarcinoma (PDA) is a critical health issue in the field of cancer, with few therapeutic options. Evidence supports an implication of the intratumoral microenvironment (stroma) on PDA progression. However, its contribution to the role of neuroplastic changes within the pathophysiology and clinical course of PDA, through tumor recurrence and neuropathic pain, remains unknown, neglecting a putative, therapeutic window. Here, we report that the intratumoral microenvironment is a mediator of PDA-associated neural remodeling (PANR), and we highlight factors such as 'SLIT2' (an axon guidance molecule), which is expressed by cancer-associated fibroblasts (CAFs), that impact on neuroplastic changes in human PDA. We showed that 'CAF-secreted SLIT2' increases neurite outgrowth from dorsal root ganglia neurons as well as from Schwann cell migration/proliferation by modulating N-cadherin/ß-catenin signaling. Importantly, SLIT2/ROBO signaling inhibition disrupts this stromal/neural connection. Finally, we revealed that SLIT2 expression and CAFs are correlated with neural remodeling within human and mouse PDA. All together, our data demonstrate the implication of CAFs, through the secretion of axon guidance molecule, in PANR. Furthermore, it provides rationale to investigate the disruption of the stromal/neural compartment connection with SLIT2/ROBO inhibitors for the treatment of pancreatic cancer recurrence and pain.


Subject(s)
Intercellular Signaling Peptides and Proteins/metabolism , Nerve Tissue Proteins/metabolism , Neurons/pathology , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Animals , Axons/drug effects , Axons/metabolism , Cadherins/metabolism , Cell Communication/drug effects , Cell Compartmentation/drug effects , Cell Line, Tumor , Cell Movement/drug effects , Culture Media/pharmacology , Fibroblasts/metabolism , Fibroblasts/pathology , Gene Expression Regulation, Neoplastic/drug effects , Humans , Male , Mice, Nude , Models, Biological , Neurons/drug effects , Neurons/metabolism , Pancreatic Neoplasms/genetics , Schwann Cells/drug effects , Schwann Cells/metabolism , Schwann Cells/pathology , Signal Transduction/drug effects , Stromal Cells/drug effects , Stromal Cells/metabolism , Stromal Cells/pathology , Transcriptome/genetics , Tumor Microenvironment/drug effects , Tumor Microenvironment/genetics , beta Catenin/metabolism , Pancreatic Neoplasms
2.
Brain Res Dev Brain Res ; 95(1): 15-27, 1996 Aug 20.
Article in English | MEDLINE | ID: mdl-8873972

ABSTRACT

E14 rat cortical neurons which have almost no glial progenitors were cocultured with a homogeneous population of mature type 1 astrocytes at a 4/1 ratio in serum free medium. Maturation of neurons was evaluated using a set of well characterized antibodies and two new monoclonal antibodies (MN2E4 and MN3H6) raised against various neurofilament subunits and whole-cell patch clamp experiments. We observed that this coculture method leads to a well-timed and very homogeneous neuronal maturation and that sequential appearance of neurofilament subunits in developing neurons correlates with the electrophysiological maturation. This sequence, early expression of the 68 kDa neurofilament subunit and late appearance of the 200 kDa neurofilament subunit, occurs in normal brain development, which validates this culture model as a useful tool for studying neuronal maturation and differentiation. MN2E4 staining (non-phosphorylated 200 kDa cytoskeletal protein antibody) appeared just before the neurons became excitable. It could thus be used as a functional neuronal marker. MN3H6 staining (phosphorylated 160-200 kDa neurofilament subunit antibody) appeared just after the neurons made synaptic contacts and generated synaptically driven spike bursts. This finding indicated that some phosphorylated epitopes of 160-200 kDa neurofilament followed synaptogenesis. These processes may play a key role in stabilizing the synapses to achieve a functional neuronal network.


Subject(s)
Astrocytes/metabolism , Cerebral Cortex/cytology , Cerebral Cortex/metabolism , Epitopes/genetics , Neurofilament Proteins/metabolism , Neurons/metabolism , Neurons/physiology , Animals , Animals, Newborn , Coculture Techniques , Electrophoresis, Polyacrylamide Gel , Electrophysiology , Humans , Immunohistochemistry , Membrane Potentials/physiology , Neuroglia/physiology , Patch-Clamp Techniques , Rats , Rats, Wistar , Time Factors
4.
Rio de Janeiro; Masson do Brasil; 3; 1981. 270 p. ilus.
Monography in Portuguese | BDENF - Nursing | ID: biblio-1036280

Subject(s)
Pediatric Nursing
SELECTION OF CITATIONS
SEARCH DETAIL
...