Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Integr Environ Assess Manag ; 13(1): 127-138, 2017 Jan.
Article in English | MEDLINE | ID: mdl-26891423

ABSTRACT

Cleaning products have long been a focus of efforts to improve sustainability and assure safety for the aquatic environment when disposed of after use. The latter is addressed at ingredient level through environmental risk assessment, including in formal frameworks such as REACH. Nevertheless, in the context of programs to improve overall sustainability, stakeholders demand both environmental safety assurance and progress at product level. Current product-level approaches for aquatic toxicity (e.g., USEtox™, Critical Dilution Volume) can be seen as predominantly hazard-based. The more logical approach would be risk-based, because ecotoxicity is generally threshold-dependent and hazard-based assessment produces conflicts with risk-based learnings. The development of a risk-based approach to assess formulated products is described: the International Association for Soaps, Detergents and Maintenance Products (A.I.S.E.) Charter Environmental Safety Check (ESC), which is consistent with the scientific principles underlying REACH. This is implemented through a simple spreadsheet tool and internal database of ingredient parameters including predicted no-effect concentration (PNEC) and removal rate. A novel feature is applying market volume information for both product types and ingredients to permit a risk-based calculation. To pass the ESC check, the projected environmental safety ratio (PESR) for each ingredient as formulated and dosed (unless cleared by a published risk assessment or exempted as inherently low risk) must be less than 1. The advantages of a risk-based approach are discussed. The strengths and limitations of various possible approaches to standard-setting, product-ranking and driving continuous improvement in respect of potential ecotoxic impacts on the aquatic environment are considered. It is proposed that as ecotoxicity is generally accepted to be threshold-dependent, with no effect below the threshold, the most constructive approach to continuous improvement of sustainability with regard to ecotoxicity is to focus efforts on instances where the safety margins for ingredients as used in specific products are narrow. This necessitates a risk-based approach. Integr Environ Assess Manag 2017;13:127-138. © 2016 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals, Inc. on behalf of SETAC.


Subject(s)
Detergents/toxicity , Water Pollutants, Chemical/toxicity , Conservation of Natural Resources/methods , Detergents/standards , Ecotoxicology , Environmental Monitoring/methods , Risk , Risk Assessment/methods , Water Pollutants, Chemical/standards , Water Pollution, Chemical/statistics & numerical data
2.
Nanotoxicology ; 7(5): 974-88, 2013 Aug.
Article in English | MEDLINE | ID: mdl-22548260

ABSTRACT

Since nanomaterials are a heterogeneous group of substances used in various applications, risk assessment needs to be done on a case-by-case basis. Here the authors assess the risk (hazard and exposure) of a glass cleaner with synthetic amorphous silicon dioxide (SAS) nanoparticles during production and consumer use (spray application). As the colloidal material used is similar to previously investigated SAS, the hazard profile was considered to be comparable. Overall, SAS has a low toxicity. Worker exposure was analysed to be well controlled. The particle size distribution indicated that the aerosol droplets were in a size range not expected to reach the alveoli. Predictive modelling was used to approximate external exposure concentrations. Consumer and environmental exposure were estimated conservatively and were not of concern. It was concluded based on the available weight-of-evidence that the production and application of the glass cleaner is safe for humans and the environment under intended use conditions.


Subject(s)
Detergents/chemistry , Inhalation Exposure/analysis , Nanoparticles/chemistry , Silicon Dioxide/chemistry , Animals , Chemical Phenomena , Humans , Models, Chemical , Risk Assessment/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...