Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nucleic Acids Res ; 41(Database issue): D764-72, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23203881

ABSTRACT

The BRENDA (BRaunschweig ENzyme DAtabase) enzyme portal (http://www.brenda-enzymes.org) is the main information system of functional biochemical and molecular enzyme data and provides access to seven interconnected databases. BRENDA contains 2.7 million manually annotated data on enzyme occurrence, function, kinetics and molecular properties. Each entry is connected to a reference and the source organism. Enzyme ligands are stored with their structures and can be accessed via their names, synonyms or via a structure search. FRENDA (Full Reference ENzyme DAta) and AMENDA (Automatic Mining of ENzyme DAta) are based on text mining methods and represent a complete survey of PubMed abstracts with information on enzymes in different organisms, tissues or organelles. The supplemental database DRENDA provides more than 910 000 new EC number-disease relations in more than 510 000 references from automatic search and a classification of enzyme-disease-related information. KENDA (Kinetic ENzyme DAta), a new amendment extracts and displays kinetic values from PubMed abstracts. The integration of the EnzymeDetector offers an automatic comparison, evaluation and prediction of enzyme function annotations for prokaryotic genomes. The biochemical reaction database BKM-react contains non-redundant enzyme-catalysed and spontaneous reactions and was developed to facilitate and accelerate the construction of biochemical models.


Subject(s)
Databases, Protein , Enzymes/chemistry , Enzymes/metabolism , Disease , Enzymes/classification , Enzymes/genetics , Internet , Kinetics , Ligands
2.
Integr Biol (Camb) ; 3(11): 1071-86, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21952610

ABSTRACT

The bioreaction database established by Ma and Zeng (Bioinformatics, 2003, 19, 270-277) for in silico reconstruction of genome-scale metabolic networks has been widely used. Based on more recent information in the reference databases KEGG LIGAND and Brenda, we upgrade the bioreaction database in this work by almost doubling the number of reactions from 3565 to 6851. Over 70% of the reactions have been manually updated/revised in terms of reversibility, reactant pairs, currency metabolites and error correction. For the first time, 41 spontaneous sugar mutarotation reactions are introduced into the biochemical database. The upgrade significantly improves the reconstruction of genome scale metabolic networks. Many gaps or missing biochemical links can be recovered, as exemplified with three model organisms Homo sapiens, Aspergillus niger, and Escherichia coli. The topological parameters of the constructed networks were also largely affected, however, the overall network structure remains scale-free. Furthermore, we consider the problem of computing biologically feasible shortest paths in reconstructed metabolic networks. We show that these paths are hard to compute and present solutions to find such paths in networks of small and medium size.


Subject(s)
Computational Biology/methods , Databases, Factual , Genome/physiology , Metabolic Networks and Pathways/physiology , Algorithms , Aspergillus niger/metabolism , Databases, Genetic , Escherichia coli/metabolism , Glucose/metabolism , Humans , Models, Biological , Software
3.
BMC Biochem ; 12: 42, 2011 Aug 08.
Article in English | MEDLINE | ID: mdl-21824409

ABSTRACT

BACKGROUND: The systematic, complete and correct reconstruction of genome-scale metabolic networks or metabolic pathways is one of the most challenging tasks in systems biology research. An essential requirement is the access to the complete biochemical knowledge - especially on the biochemical reactions. This knowledge is extracted from the scientific literature and collected in biological databases. Since the available databases differ in the number of biochemical reactions and the annotation of the reactions, an integrated knowledge resource would be of great value. RESULTS: We developed a comprehensive non-redundant reaction database containing known enzyme-catalyzed and spontaneous reactions. Currently, it comprises 18,172 unique biochemical reactions. As source databases the biochemical databases BRENDA, KEGG, and MetaCyc were used. Reactions of these databases were matched and integrated by aligning substrates and products. For the latter a two-step comparison using their structures (via InChIs) and names was performed. Each biochemical reaction given as a reaction equation occurring in at least one of the databases was included. CONCLUSIONS: An integrated non-redundant reaction database has been developed and is made available to users. The database can significantly facilitate and accelerate the construction of accurate biochemical models.


Subject(s)
Databases, Factual , Enzymes/chemistry , Enzymes/metabolism , Biochemistry , User-Computer Interface
4.
Nucleic Acids Res ; 39(Database issue): D670-6, 2011 Jan.
Article in English | MEDLINE | ID: mdl-21062828

ABSTRACT

The BRENDA (BRaunschweig ENzyme Database, http://www.brenda-enzymes.org) enzyme information system is the main collection of enzyme functional and property data for the scientific community. The majority of the data are manually extracted from the primary literature. The content covers information on function, structure, occurrence, preparation and application of enzymes as well as properties of mutants and engineered variants. The number of manually annotated references increased by 30% to more than 100,000, the number of ligand structures by 45% to almost 100,000. New query, analysis and data management tools were implemented to improve data processing, data presentation, data input and data access. BRENDA now provides new viewing options such as the display of the statistics of functional parameters and the 3D view of protein sequence and structure features. Furthermore a ligand summary shows comprehensive information on the BRENDA ligands. The enzymes are linked to their respective pathways and can be viewed in pathway maps. The disease text mining part is strongly enhanced. It is possible to submit new, not yet classified enzymes to BRENDA, which then are reviewed and classified by the International Union of Biochemistry and Molecular Biology. A new SBML output format of BRENDA kinetic data allows the construction of organism-specific metabolic models.


Subject(s)
Databases, Protein , Enzymes/chemistry , Enzymes/genetics , Enzymes/metabolism , Ligands , Metabolic Networks and Pathways , Protein Conformation , Software
SELECTION OF CITATIONS
SEARCH DETAIL
...