Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters










Publication year range
1.
Nat Commun ; 14(1): 3791, 2023 06 26.
Article in English | MEDLINE | ID: mdl-37365167

ABSTRACT

Eviction of histones from nucleosomes and their exchange with newly synthesized or alternative variants is a central epigenetic determinant. Here, we define the genome-wide occupancy and exchange pattern of canonical and non-canonical histone variants in mouse embryonic stem cells by genetically encoded exchange sensors. While exchange of all measured variants scales with transcription, we describe variant-specific associations with transcription elongation and Polycomb binding. We found considerable exchange of H3.1 and H2B variants in heterochromatin and repeat elements, contrasting the occupancy and little exchange of H3.3 in these regions. This unexpected association between H3.3 occupancy and exchange of canonical variants is also evident in active promoters and enhancers, and further validated by reduced H3.1 dynamics following depletion of H3.3-specific chaperone, HIRA. Finally, analyzing transgenic mice harboring H3.1 or H3.3 sensors demonstrates the vast potential of this system for studying histone exchange and its impact on gene expression regulation in vivo.


Subject(s)
Histones , Mouse Embryonic Stem Cells , Animals , Mice , Histones/genetics , Histones/metabolism , Mouse Embryonic Stem Cells/metabolism , Nucleosomes/genetics , Regulatory Sequences, Nucleic Acid , Gene Expression Regulation
2.
Cell ; 186(12): 2610-2627.e18, 2023 06 08.
Article in English | MEDLINE | ID: mdl-37209682

ABSTRACT

The hourglass model describes the convergence of species within the same phylum to a similar body plan during development; however, the molecular mechanisms underlying this phenomenon in mammals remain poorly described. Here, we compare rabbit and mouse time-resolved differentiation trajectories to revisit this model at single-cell resolution. We modeled gastrulation dynamics using hundreds of embryos sampled between gestation days 6.0 and 8.5 and compared the species using a framework for time-resolved single-cell differentiation-flows analysis. We find convergence toward similar cell-state compositions at E7.5, supported by the quantitatively conserved expression of 76 transcription factors, despite divergence in surrounding trophoblast and hypoblast signaling. However, we observed noticeable changes in specification timing of some lineages and divergence of primordial germ cell programs, which in the rabbit do not activate mesoderm genes. Comparative analysis of temporal differentiation models provides a basis for studying the evolution of gastrulation dynamics across mammals.


Subject(s)
Gastrulation , Mesoderm , Animals , Rabbits , Mice , Gastrulation/genetics , Mesoderm/physiology , Cell Differentiation/physiology , Mammals/genetics , Trophoblasts , Gene Expression Regulation, Developmental
3.
Cell ; 186(4): 683-685, 2023 02 16.
Article in English | MEDLINE | ID: mdl-36803599

ABSTRACT

Transgenerational epigenetic inheritance in mammals has long been debatable. In this issue of Cell, Takahashi et al. induce DNA methylation at promoter-associated CpG islands (CGIs) of two metabolism-related genes and show that the acquired epigenetic changes and associated metabolic phenotypes are stably propagated across several generations in transgenic mice.


Subject(s)
DNA Methylation , Epigenesis, Genetic , Mice , Animals , Mammals/genetics , Inheritance Patterns , CpG Islands/genetics
5.
Stem Cell Reports ; 17(11): 2484-2500, 2022 11 08.
Article in English | MEDLINE | ID: mdl-36270280

ABSTRACT

The recent derivation of human trophoblast stem cells (TSCs) from placental cytotrophoblasts and blastocysts opened opportunities for studying the development and function of the human placenta. Recent reports have suggested that human naïve, but not primed, pluripotent stem cells (PSCs) retain an exclusive potential to generate TSCs. Here we report that, in the absence of WNT stimulation, transforming growth factor ß (TGF-ß) pathway inhibition leads to direct and robust conversion of primed human PSCs into TSCs. The resulting primed PSC-derived TSC lines exhibit self-renewal, can differentiate into the main trophoblast lineages, and present RNA and epigenetic profiles that are indistinguishable from recently established TSC lines derived from human placenta, blastocysts, or isogenic human naïve PSCs expanded under human enhanced naïve stem cell medium (HENSM) conditions. Activation of nuclear Yes-associated protein (YAP) signaling is sufficient for this conversion and necessary for human TSC maintenance. Our findings underscore a residual plasticity in primed human PSCs that allows their in vitro conversion into extra-embryonic trophoblast lineages.


Subject(s)
Pluripotent Stem Cells , Trophoblasts , Female , Humans , Pregnancy , Blastocyst , Cell Differentiation , Placenta , Pluripotent Stem Cells/metabolism
6.
Cell Stem Cell ; 29(10): 1445-1458.e8, 2022 10 06.
Article in English | MEDLINE | ID: mdl-36084657

ABSTRACT

Several in vitro models have been developed to recapitulate mouse embryogenesis solely from embryonic stem cells (ESCs). Despite mimicking many aspects of early development, they fail to capture the interactions between embryonic and extraembryonic tissues. To overcome this difficulty, we have developed a mouse ESC-based in vitro model that reconstitutes the pluripotent ESC lineage and the two extraembryonic lineages of the post-implantation embryo by transcription-factor-mediated induction. This unified model recapitulates developmental events from embryonic day 5.5 to 8.5, including gastrulation; formation of the anterior-posterior axis, brain, and a beating heart structure; and the development of extraembryonic tissues, including yolk sac and chorion. Comparing single-cell RNA sequencing from individual structures with time-matched natural embryos identified remarkably similar transcriptional programs across lineages but also showed when and where the model diverges from the natural program. Our findings demonstrate an extraordinary plasticity of ESCs to self-organize and generate a whole-embryo-like structure.


Subject(s)
Embryo, Mammalian , Neurulation , Animals , Embryonic Development , Embryonic Stem Cells , Mice , Mouse Embryonic Stem Cells
7.
Nat Commun ; 13(1): 4391, 2022 07 29.
Article in English | MEDLINE | ID: mdl-35906226

ABSTRACT

Mammalian parental imprinting represents an exquisite form of epigenetic control regulating the parent-specific monoallelic expression of genes in clusters. While imprinting perturbations are widely associated with developmental abnormalities, the intricate regional interplay between imprinted genes makes interpreting the contribution of gene dosage effects to phenotypes a challenging task. Using mouse models with distinct deletions in an intergenic region controlling imprinting across the Dlk1-Dio3 domain, we link changes in genetic and epigenetic states to allelic-expression and phenotypic outcome in vivo. This determined how hierarchical interactions between regulatory elements orchestrate robust parent-specific expression, with implications for non-imprinted gene regulation. Strikingly, flipping imprinting on the parental chromosomes by crossing genotypes of complete and partial intergenic element deletions rescues the lethality of each deletion on its own. Our work indicates that parental origin of an epigenetic state is irrelevant as long as appropriate balanced gene expression is established and maintained at imprinted loci.


Subject(s)
Chromosomes , Genomic Imprinting , Alleles , Animals , DNA Methylation/genetics , DNA, Intergenic , Gene Dosage , Genomic Imprinting/genetics , Mammals/genetics , Mice
8.
Cell ; 185(17): 3169-3185.e20, 2022 08 18.
Article in English | MEDLINE | ID: mdl-35908548

ABSTRACT

Mice deficient for all ten-eleven translocation (TET) genes exhibit early gastrulation lethality. However, separating cause and effect in such embryonic failure is challenging. To isolate cell-autonomous effects of TET loss, we used temporal single-cell atlases from embryos with partial or complete mutant contributions. Strikingly, when developing within a wild-type embryo, Tet-mutant cells retain near-complete differentiation potential, whereas embryos solely comprising mutant cells are defective in epiblast to ectoderm transition with degenerated mesoderm potential. We map de-repressions of early epiblast factors (e.g., Dppa4 and Gdf3) and failure to activate multiple signaling from nascent mesoderm (Lefty, FGF, and Notch) as likely cell-intrinsic drivers of TET loss phenotypes. We further suggest loss of enhancer demethylation as the underlying mechanism. Collectively, our work demonstrates an unbiased approach for defining intrinsic and extrinsic embryonic gene function based on temporal differentiation atlases and disentangles the intracellular effects of the demethylation machinery from its broader tissue-level ramifications.


Subject(s)
Gastrulation , Mesoderm , Animals , Cell Differentiation/genetics , Embryo, Mammalian/metabolism , Gastrulation/genetics , Gene Expression Regulation, Developmental , Mice , Nuclear Proteins/metabolism , Signal Transduction
9.
Nat Methods ; 18(9): 1060-1067, 2021 09.
Article in English | MEDLINE | ID: mdl-34480159

ABSTRACT

N6-methyladenosine (m6A) is the most prevalent modification of messenger RNA in mammals. To interrogate its functions and dynamics, there is a critical need to quantify m6A at three levels: site, gene and sample. Current approaches address these needs in a limited manner. Here we develop m6A-seq2, relying on multiplexed m6A-immunoprecipitation of barcoded and pooled samples. m6A-seq2 allows a big increase in throughput while reducing technical variability, requirements of input material and cost. m6A-seq2 is furthermore uniquely capable of providing sample-level relative quantitations of m6A, serving as an orthogonal alternative to mass spectrometry-based approaches. Finally, we develop a computational approach for gene-level quantitation of m6A. We demonstrate that using this metric, roughly 30% of the variability in RNA half life in mouse embryonic stem cells can be explained, establishing m6A as a main driver of RNA stability. m6A-seq2 thus provides an experimental and analytic framework for dissecting m6A-mediated regulation at three different levels.


Subject(s)
Adenosine/analogs & derivatives , RNA Stability/genetics , Sequence Analysis, RNA/methods , Adenosine/analysis , Adenosine/genetics , Animals , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Gene Expression , Half-Life , Meiosis , Methyltransferases/genetics , Methyltransferases/metabolism , Mice , Mice, Knockout , Mouse Embryonic Stem Cells/cytology , Mouse Embryonic Stem Cells/physiology , RNA Splicing Factors/genetics , RNA Splicing Factors/metabolism , Yeasts/genetics
10.
Cell ; 184(11): 2825-2842.e22, 2021 05 27.
Article in English | MEDLINE | ID: mdl-33932341

ABSTRACT

Mouse embryonic development is a canonical model system for studying mammalian cell fate acquisition. Recently, single-cell atlases comprehensively charted embryonic transcriptional landscapes, yet inference of the coordinated dynamics of cells over such atlases remains challenging. Here, we introduce a temporal model for mouse gastrulation, consisting of data from 153 individually sampled embryos spanning 36 h of molecular diversification. Using algorithms and precise timing, we infer differentiation flows and lineage specification dynamics over the embryonic transcriptional manifold. Rapid transcriptional bifurcations characterize the commitment of early specialized node and blood cells. However, for most lineages, we observe combinatorial multi-furcation dynamics rather than hierarchical transcriptional transitions. In the mesoderm, dozens of transcription factors combinatorially regulate multifurcations, as we exemplify using time-matched chimeric embryos of Foxc1/Foxc2 mutants. Our study rejects the notion of differentiation being governed by a series of binary choices, providing an alternative quantitative model for cell fate acquisition.


Subject(s)
Embryonic Development/physiology , Gastrulation/physiology , Animals , Cell Differentiation , Cell Lineage , Embryo, Mammalian/cytology , Embryonic Development/genetics , Female , Gene Expression , Mice/embryology , Mice, Inbred C57BL , Mouse Embryonic Stem Cells , Pregnancy , Sequence Analysis, RNA/methods , Single-Cell Analysis/methods
11.
Mol Cell ; 81(11): 2374-2387.e3, 2021 06 03.
Article in English | MEDLINE | ID: mdl-33905683

ABSTRACT

Adenosine-to-inosine editing is catalyzed by ADAR1 at thousands of sites transcriptome-wide. Despite intense interest in ADAR1 from physiological, bioengineering, and therapeutic perspectives, the rules of ADAR1 substrate selection are poorly understood. Here, we used large-scale systematic probing of ∼2,000 synthetic constructs to explore the structure and sequence context determining editability. We uncover two structural layers determining the formation and propagation of A-to-I editing, independent of sequence. First, editing is robustly induced at fixed intervals of 35 bp upstream and 30 bp downstream of structural disruptions. Second, editing is symmetrically introduced on opposite sites on a double-stranded structure. Our findings suggest a recursive model for RNA editing, whereby the structural alteration induced by the editing at one site iteratively gives rise to the formation of an additional editing site at a fixed periodicity, serving as a basis for the propagation of editing along and across both strands of double-stranded RNA structures.


Subject(s)
Adenosine Deaminase/genetics , Adenosine/metabolism , Inosine/metabolism , RNA Editing , RNA, Double-Stranded/genetics , RNA-Binding Proteins/genetics , A549 Cells , Adenosine/genetics , Adenosine Deaminase/metabolism , Animals , Base Pairing , HEK293 Cells , Humans , Inosine/genetics , MCF-7 Cells , Mice , NIH 3T3 Cells , Nucleic Acid Conformation , RNA, Double-Stranded/chemistry , RNA, Double-Stranded/metabolism , RNA-Binding Proteins/metabolism
12.
Nature ; 593(7857): 119-124, 2021 05.
Article in English | MEDLINE | ID: mdl-33731940

ABSTRACT

The mammalian body plan is established shortly after the embryo implants into the maternal uterus, and our understanding of post-implantation developmental processes remains limited. Although pre- and peri-implantation mouse embryos are routinely cultured in vitro1,2, approaches for the robust culture of post-implantation embryos from egg cylinder stages until advanced organogenesis remain to be established. Here we present highly effective platforms for the ex utero culture of post-implantation mouse embryos, which enable the appropriate development of embryos from before gastrulation (embryonic day (E) 5.5) until the hindlimb formation stage (E11). Late gastrulating embryos (E7.5) are grown in three-dimensional rotating bottles, whereas extended culture from pre-gastrulation stages (E5.5 or E6.5) requires a combination of static and rotating bottle culture platforms. Histological, molecular and single-cell RNA sequencing analyses confirm that the ex utero cultured embryos recapitulate in utero development precisely. This culture system is amenable to the introduction of a variety of embryonic perturbations and micro-manipulations, the results of which can be followed ex utero for up to six days. The establishment of a system for robustly growing normal mouse embryos ex utero from pre-gastrulation to advanced organogenesis represents a valuable tool for investigating embryogenesis, as it eliminates the uterine barrier and allows researchers to mechanistically interrogate post-implantation morphogenesis and artificial embryogenesis in mammals.


Subject(s)
Embryo Culture Techniques , Embryo, Mammalian/embryology , Embryonic Development , In Vitro Techniques , Organogenesis , Animals , Embryo Culture Techniques/methods , Embryo, Mammalian/cytology , Female , Gastrulation , Male , Mice , Time Factors , Uterus
13.
Mol Cell ; 75(5): 905-920.e6, 2019 09 05.
Article in English | MEDLINE | ID: mdl-31422875

ABSTRACT

Variable levels of DNA methylation have been reported at tissue-specific differential methylation regions (DMRs) overlapping enhancers, including super-enhancers (SEs) associated with key cell identity genes, but the mechanisms responsible for this intriguing behavior are not well understood. We used allele-specific reporters at the endogenous Sox2 and Mir290 SEs in embryonic stem cells and found that the allelic DNA methylation state is dynamically switching, resulting in cell-to-cell heterogeneity. Dynamic DNA methylation is driven by the balance between DNA methyltransferases and transcription factor binding on one side and co-regulated with the Mediator complex recruitment and H3K27ac level changes at regulatory elements on the other side. DNA methylation at the Sox2 and the Mir290 SEs is independently regulated and has distinct consequences on the cellular differentiation state. Dynamic allele-specific DNA methylation at the two SEs was also seen at different stages in preimplantation embryos, revealing that methylation heterogeneity occurs in vivo.


Subject(s)
Cell Differentiation/physiology , DNA Methylation/physiology , Enhancer Elements, Genetic/physiology , Mouse Embryonic Stem Cells/metabolism , Transcription, Genetic/physiology , Animals , Cell Line , Jumonji Domain-Containing Histone Demethylases/genetics , Jumonji Domain-Containing Histone Demethylases/metabolism , Mice , MicroRNAs/genetics , MicroRNAs/metabolism , Mouse Embryonic Stem Cells/cytology , SOXB1 Transcription Factors/genetics , SOXB1 Transcription Factors/metabolism
14.
Cell Stem Cell ; 24(2): 328-341.e9, 2019 02 07.
Article in English | MEDLINE | ID: mdl-30554962

ABSTRACT

The epigenetic dynamics of induced pluripotent stem cell (iPSC) reprogramming in correctly reprogrammed cells at high resolution and throughout the entire process remain largely undefined. Here, we characterize conversion of mouse fibroblasts into iPSCs using Gatad2a-Mbd3/NuRD-depleted and highly efficient reprogramming systems. Unbiased high-resolution profiling of dynamic changes in levels of gene expression, chromatin engagement, DNA accessibility, and DNA methylation were obtained. We identified two distinct and synergistic transcriptional modules that dominate successful reprogramming, which are associated with cell identity and biosynthetic genes. The pluripotency module is governed by dynamic alterations in epigenetic modifications to promoters and binding by Oct4, Sox2, and Klf4, but not Myc. Early DNA demethylation at certain enhancers prospectively marks cells fated to reprogram. Myc activity drives expression of the essential biosynthetic module and is associated with optimized changes in tRNA codon usage. Our functional validations highlight interweaved epigenetic- and Myc-governed essential reconfigurations that rapidly commission and propel deterministic reprogramming toward naive pluripotency.


Subject(s)
Cellular Reprogramming/genetics , Epigenesis, Genetic , Proto-Oncogene Proteins c-myc/metabolism , Transcription, Genetic , Animals , Cell Lineage/genetics , Chromatin/metabolism , Demethylation , Humans , Induced Pluripotent Stem Cells/metabolism , Kruppel-Like Factor 4 , Mice , Protein Binding , RNA, Transfer/metabolism , Transcription Factors/metabolism
15.
Cell ; 167(1): 233-247.e17, 2016 Sep 22.
Article in English | MEDLINE | ID: mdl-27662091

ABSTRACT

Mammalian DNA methylation is a critical epigenetic mechanism orchestrating gene expression networks in many biological processes. However, investigation of the functions of specific methylation events remains challenging. Here, we demonstrate that fusion of Tet1 or Dnmt3a with a catalytically inactive Cas9 (dCas9) enables targeted DNA methylation editing. Targeting of the dCas9-Tet1 or -Dnmt3a fusion protein to methylated or unmethylated promoter sequences caused activation or silencing, respectively, of an endogenous reporter. Targeted demethylation of the BDNF promoter IV or the MyoD distal enhancer by dCas9-Tet1 induced BDNF expression in post-mitotic neurons or activated MyoD facilitating reprogramming of fibroblasts into myoblasts, respectively. Targeted de novo methylation of a CTCF loop anchor site by dCas9-Dnmt3a blocked CTCF binding and interfered with DNA looping, causing altered gene expression in the neighboring loop. Finally, we show that these tools can edit DNA methylation in mice, demonstrating their wide utility for functional studies of epigenetic regulation.


Subject(s)
Clustered Regularly Interspaced Short Palindromic Repeats , DNA (Cytosine-5-)-Methyltransferases/metabolism , DNA Methylation/genetics , DNA-Binding Proteins/metabolism , Epigenesis, Genetic , Gene Editing/methods , Proto-Oncogene Proteins/metabolism , Animals , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Brain-Derived Neurotrophic Factor/genetics , CCCTC-Binding Factor , CRISPR-Associated Protein 9 , Cell Line , CpG Islands , DNA (Cytosine-5-)-Methyltransferases/genetics , DNA Methyltransferase 3A , DNA-Binding Proteins/genetics , Endonucleases/genetics , Endonucleases/metabolism , Enhancer Elements, Genetic , Genome , Mice , MyoD Protein/metabolism , Neurons/metabolism , Promoter Regions, Genetic , Protein Binding , Proto-Oncogene Proteins/genetics , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Repressor Proteins/metabolism
16.
Cell Rep ; 16(12): 3167-3180, 2016 09 20.
Article in English | MEDLINE | ID: mdl-27653683

ABSTRACT

Parent-specific differentially methylated regions (DMRs) are established during gametogenesis and regulate parent-specific expression of imprinted genes. Monoallelic expression of imprinted genes is essential for development, suggesting that imprints are faithfully maintained in embryos and adults. To test this hypothesis, we targeted a reporter for genomic methylation to the imprinted Dlk1-Dio3 intergenic DMR (IG-DMR) to assess the methylation of both parental alleles at single-cell resolution. Biallelic gain or loss of IG-DMR methylation occurred in a small fraction of mouse embryonic stem cells, significantly affecting developmental potency. Mice carrying the reporter in either parental allele showed striking parent-specific changes in IG-DMR methylation, causing substantial and consistent tissue- and cell-type-dependent signatures in embryos and postnatal animals. Furthermore, dynamics in DNA methylation persisted during adult neurogenesis, resulting in inter-individual diversity. This substantial cell-cell DNA methylation heterogeneity implies that dynamic DNA methylation variations in the adult may be of functional importance.


Subject(s)
DNA Methylation/genetics , Embryonic Development/genetics , Genomic Imprinting/genetics , Neurogenesis/genetics , Animals , Mice
17.
Nature ; 533(7601): 95-9, 2016 May 05.
Article in English | MEDLINE | ID: mdl-27096366

ABSTRACT

Genome-wide association studies (GWAS) have identified numerous genetic variants associated with complex diseases, but mechanistic insights are impeded by a lack of understanding of how specific risk variants functionally contribute to the underlying pathogenesis. It has been proposed that cis-acting effects of non-coding risk variants on gene expression are a major factor for phenotypic variation of complex traits and disease susceptibility. Recent genome-scale epigenetic studies have highlighted the enrichment of GWAS-identified variants in regulatory DNA elements of disease-relevant cell types. Furthermore, single nucleotide polymorphism (SNP)-specific changes in transcription factor binding are correlated with heritable alterations in chromatin state and considered a major mediator of sequence-dependent regulation of gene expression. Here we describe a novel strategy to functionally dissect the cis-acting effect of genetic risk variants in regulatory elements on gene expression by combining genome-wide epigenetic information with clustered regularly-interspaced short palindromic repeats (CRISPR)/Cas9 genome editing in human pluripotent stem cells. By generating a genetically precisely controlled experimental system, we identify a common Parkinson's disease associated risk variant in a non-coding distal enhancer element that regulates the expression of α-synuclein (SNCA), a key gene implicated in the pathogenesis of Parkinson's disease. Our data suggest that the transcriptional deregulation of SNCA is associated with sequence-dependent binding of the brain-specific transcription factors EMX2 and NKX6-1. This work establishes an experimental paradigm to functionally connect genetic variation with disease-relevant phenotypes.


Subject(s)
Enhancer Elements, Genetic/genetics , Gene Expression Regulation , Genetic Predisposition to Disease/genetics , Parkinson Disease/genetics , alpha-Synuclein/genetics , Alleles , Brain/metabolism , CRISPR-Cas Systems/genetics , Epigenesis, Genetic/genetics , Genetic Engineering , Genome, Human/genetics , Homeodomain Proteins/metabolism , Humans , Models, Genetic , Pluripotent Stem Cells/metabolism , Risk , Transcription Factors/metabolism
18.
Article in English | MEDLINE | ID: mdl-26432525

ABSTRACT

DNA methylation is a broadly studied epigenetic modification that is essential for normal mammalian development. Over the years, numerous methodologies were developed trying to cope with the intrinsic challenge of reading the "second dimension" epigenetic code. The recent rapid expansion of sequencing technologies has made it possible to fully chart the methylation landscape of different cell types at single-base resolution. Surprisingly, accumulating data suggest that, in addition to the massive epigenome remodeling during early development, cell type and tissue specification is associated with high levels of DNA methylation dynamics at distal regulatory elements. However, current methods provide only a static "snapshot" of DNA methylation, thus precluding the study of real-time methylation dynamics during cell fate changes. Here we review the principles of a new approach that enables monitoring loci-specific DNA methylation dynamics at single-cell resolution. We also discuss potential applications and promises for implementing this methodology to study DNA methylation changes during development and disease.


Subject(s)
DNA Methylation/genetics , Gene Expression Regulation, Developmental/genetics , Animals , Cell Differentiation/genetics , Epigenesis, Genetic , Gene Expression Regulation/genetics , Genes, Reporter , Humans , Single-Cell Analysis
19.
Cell ; 163(1): 218-29, 2015 Sep 24.
Article in English | MEDLINE | ID: mdl-26406378

ABSTRACT

Mammalian DNA methylation plays an essential role in development. To date, only snapshots of different mouse and human cell types have been generated, providing a static view on DNA methylation. To enable monitoring of methylation status as it changes over time, we establish a reporter of genomic methylation (RGM) that relies on a minimal imprinted gene promoter driving a fluorescent protein. We show that insertion of RGM proximal to promoter-associated CpG islands reports the gain or loss of DNA methylation. We further utilized RGM to report endogenous methylation dynamics of non-coding regulatory elements, such as the pluripotency-specific super enhancers of Sox2 and miR290. Loci-specific DNA methylation changes and their correlation with transcription were visualized during cell-state transition following differentiation of mouse embryonic stem cells and during reprogramming of somatic cells to pluripotency. RGM will allow the investigation of dynamic methylation changes during development and disease at single-cell resolution.


Subject(s)
DNA Methylation , Single-Cell Analysis , Animals , CpG Islands , DNA Modification Methylases/metabolism , Embryonic Stem Cells , Enhancer Elements, Genetic , Humans , Mice , MicroRNAs/metabolism , Promoter Regions, Genetic , SOXB1 Transcription Factors/metabolism
20.
Cell Rep ; 11(2): 308-20, 2015 Apr 14.
Article in English | MEDLINE | ID: mdl-25843718

ABSTRACT

Parental imprinting results in monoallelic parent-of-origin-dependent gene expression. However, many imprinted genes identified by differential methylation do not exhibit complete monoallelic expression. Previous studies demonstrated complex tissue-dependent expression patterns for some imprinted genes. Still, the complete magnitude of this phenomenon remains largely unknown. By differentiating human parthenogenetic induced pluripotent stem cells into different cell types and combining DNA methylation with a 5' RNA sequencing methodology, we were able to identify tissue- and isoform-dependent imprinted genes in a genome-wide manner. We demonstrate that nearly half of all imprinted genes express both biallelic and monoallelic isoforms that are controlled by tissue-specific alternative promoters. This study provides a global analysis of tissue-specific imprinting in humans and suggests that alternative promoters are central in the regulation of imprinted genes.


Subject(s)
Cell Differentiation/genetics , Genomic Imprinting/genetics , Induced Pluripotent Stem Cells , Transcription, Genetic , DNA Methylation/genetics , Gene Expression Profiling , Gene Expression Regulation , Humans , Organ Specificity/genetics , Promoter Regions, Genetic , Protein Isoforms/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...