Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Materials (Basel) ; 16(5)2023 Feb 28.
Article in English | MEDLINE | ID: mdl-36903120

ABSTRACT

The combustion of metal fuels as energy carriers in a closed-cycle carbon-free process is a promising approach for reducing CO2 emissions in the energy sector. For a possible large-scale implementation, the influence of process conditions on particle properties and vice versa has to be well understood. In this study, the influence of different fuel-air equivalence ratios on particle morphology, size and degree of oxidation in an iron-air model burner is investigated by means of small- and wide-angle X-ray scattering, laser diffraction analysis and electron microscopy. The results show a decrease in median particle size and an increase in the degree of oxidation for leaner combustion conditions. The difference of 1.94 µm in median particle size between lean and rich conditions is twentyfold greater than the expected amount and can be connected to an increased intensity of microexplosions and nanoparticle formation for oxygen-rich atmospheres. Furthermore, the influence of the process conditions on the fuel usage efficiency is investigated, yielding efficiencies of up to 0.93. Furthermore, by choosing a suitable particle size range of 1 to 10 µm, the amount of residual iron content can be minimized. The results emphasize that particle size plays a key role in optimizing this process for the future.

2.
Sci Rep ; 11(1): 476, 2021 01 22.
Article in English | MEDLINE | ID: mdl-33483555

ABSTRACT

This work presents a novel laser-based optoacoustic transducer capable of reproducing controlled and continuous sound of arbitrary complexity in the air or on solid targets. Light-to-sound transduction is achieved via laser-induced breakdown, leading to the formation of plasma acoustic sources in any desired spatial location. The acoustic signal is encoded into pulse streams via a discrete-time audio modulation and is reproduced by fast consecutive excitation of the target medium with appropriately modulated laser pulses. This results in the signal being directly reconstructed at the desired location of the target medium without the need for a receiver or demodulation device. In this work, the principles and evaluation results of such a novel laser-sound prototype system are presented. The performance of the prototype is evaluated by systematic experimental measurements of audio test signals, from which the basic acoustical response is derived. Moreover, a generic computational model is presented that allows for the simulation of laser-sound reproduction of 1-bit or multibit audio streams. The model evaluations are validated by comparison with the acoustic measurements, whereby a good agreement is found. Finally, the computational model is used to simulate an ideal optoacoustic transducer based on the specifications of state-of-the-art commercially available lasers.

SELECTION OF CITATIONS
SEARCH DETAIL