Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Immunol ; 15: 1423141, 2024.
Article in English | MEDLINE | ID: mdl-39055713

ABSTRACT

Background: Trichothiodystrophy-1 (TTD1) is an autosomal-recessive disease and caused by mutations in ERCC2, a gene coding for a subunit of the TFIIH transcription and nucleotide-excision repair (NER) factor. In almost half of these patients infectious susceptibility has been reported but the underlying molecular mechanism leading to immunodeficiency is largely unknown. Objective: The aim of this study was to perform extended molecular and immunological phenotyping in patients suffering from TTD1. Methods: Cellular immune phenotype was investigated using multicolor flow cytometry. DNA repair efficiency was evaluated in UV-irradiation assays. Furthermore, early BCR activation events and proliferation of TTD1 lymphocytes following DNA damage induction was tested. In addition, we performed differential gene expression analysis in peripheral lymphocytes of TTD1 patients. Results: We investigated three unrelated TTD1 patients who presented with recurrent infections early in life of whom two harbored novel ERCC2 mutations and the third patient is a carrier of previously described pathogenic ERCC2 mutations. Hypogammaglobulinemia and decreased antibody responses following vaccination were found. TTD1 B-cells showed accumulation of γ-H2AX levels, decreased proliferation activity and reduced cell viability following UV-irradiation. mRNA sequencing analysis revealed significantly downregulated genes needed for B-cell development and activation. Analysis of B-cell subpopulations showed low numbers of naïve and transitional B-cells in TTD1 patients, indicating abnormal B-cell differentiation in vivo. Conclusion: In summary, our analyses confirmed the pathogenicity of novel ERCC2 mutations and show that ERCC2 deficiency is associated with antibody deficiency most likely due to altered B-cell differentiation resulting from impaired BCR-mediated B-cell activation and activation-induced gene transcription.


Subject(s)
B-Lymphocytes , Mutation , Xeroderma Pigmentosum Group D Protein , Humans , B-Lymphocytes/immunology , Xeroderma Pigmentosum Group D Protein/genetics , Xeroderma Pigmentosum Group D Protein/deficiency , Male , Female , Trichothiodystrophy Syndromes/genetics , Trichothiodystrophy Syndromes/immunology , DNA Repair , Child , Lymphocyte Activation/genetics , Child, Preschool , Adolescent
2.
J Allergy Clin Immunol ; 151(4): 922-925, 2023 04.
Article in English | MEDLINE | ID: mdl-36463978

ABSTRACT

BACKGROUND: Although previous studies described the production of IgG antibodies in a subgroup of patients with common variable immunodeficiency (CVID) following messenger RNA vaccinations with BNT162b2 severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) (CVID responders), the functionality of these antibodies in terms of avidity as measured by the dissociation rate constant (kdis) and the antibody response to booster immunization has not been studied. OBJECTIVE: We sought to analyze in CVID responders and healthy individuals, the avidity of anti-SARS-CoV-2 serum antibodies and their neutralization capacity as measured by surrogate virus-neutralizing antibodies in addition to IgG-, IgM-, and IgA-antibody levels and the response of circulating (peripheral blood) follicular T-helper cells after a third vaccination with BNT162b2 SARS-CoV-2 messenger RNA vaccine. METHODS: Binding IgG, IgA, and IgM serum levels were analyzed by ELISA in patients with CVID responding to the primary vaccination (CVID responders, n = 10) and healthy controls (n = 41). The binding avidity of anti-spike antibodies was investigated using biolayer interferometry in combination with biotin-labeled receptor-binding-domain of SARS-CoV-2 spike protein and streptavidin-labeled sensors. Antigen-specific recall T-cell responses were assessed by measuring activation-induced markers by flow cytometry. RESULTS: After the third vaccination with BNT162b2, IgG-, IgM-, and IgA-antibody levels, surrogate virus-neutralizing antibody levels, and antibody avidity were lower in CVID responders than in healthy controls. In contrast, anti-SARS-CoV-2 spike protein avidity was comparable in CVID responders and healthy individuals following primary vaccination. Follicular T-helper cell response to booster vaccination in CVID responders was significantly reduced when compared with that in healthy individuals. CONCLUSIONS: Impaired affinity maturation during booster response provides new insight into CVID pathophysiology.


Subject(s)
COVID-19 , Common Variable Immunodeficiency , Humans , BNT162 Vaccine , Antibody Formation , COVID-19/prevention & control , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , COVID-19 Vaccines , Antibodies, Blocking , Antibodies, Viral , Immunoglobulin A , Immunoglobulin M
3.
Front Immunol ; 13: 827048, 2022.
Article in English | MEDLINE | ID: mdl-35237272

ABSTRACT

Previous studies on immune responses following COVID-19 vaccination in patients with common variable immunodeficiency (CVID) were inconclusive with respect to the ability of the patients to produce vaccine-specific IgG antibodies, while patients with milder forms of primary antibody deficiency such as immunoglobulin isotype deficiency or selective antibody deficiency have not been studied at all. In this study we examined antigen-specific activation of CXCR5-positive and CXCR5-negative CD4+ memory cells and also isotype-specific and functional antibody responses in patients with CVID as compared to other milder forms of primary antibody deficiency and healthy controls six weeks after the second dose of BNT162b2 vaccine against SARS-CoV-2. Expression of the activation markers CD25 and CD134 was examined by multi-color flow cytometry on CD4+ T cell subsets stimulated with SARS-CoV-2 spike peptides, while in parallel IgG and IgA antibodies and surrogate virus neutralization antibodies against SARS-CoV-2 spike protein were measured by ELISA. The results show that in CVID and patients with other milder forms of antibody deficiency normal IgG responses (titers of spike protein-specific IgG three times the detection limit or more) were associated with intact vaccine-specific activation of CXCR5-negative CD4+ memory T cells, despite defective activation of circulating T follicular helper cells. In contrast, CVID IgG nonresponders showed defective vaccine-specific and superantigen-induced activation of both CD4+T cell subsets. In conclusion, impaired TCR-mediated activation of CXCR5-negative CD4+ memory T cells following stimulation with vaccine antigen or superantigen identifies patients with primary antibody deficiency and impaired IgG responses after BNT162b2 vaccination.


Subject(s)
BNT162 Vaccine/immunology , CD4-Positive T-Lymphocytes/immunology , COVID-19/immunology , Primary Immunodeficiency Diseases/immunology , SARS-CoV-2/immunology , Adult , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/prevention & control , Common Variable Immunodeficiency/immunology , Enterotoxins/immunology , Female , Humans , Immunoglobulin G/immunology , Lymphocyte Activation , Male , Memory T Cells/immunology , Middle Aged , Receptors, Antigen, T-Cell/immunology , Receptors, CXCR5/immunology , T Follicular Helper Cells/immunology , Vaccination
SELECTION OF CITATIONS
SEARCH DETAIL
...