Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Nutr ; 10: 1290502, 2023.
Article in English | MEDLINE | ID: mdl-38192645

ABSTRACT

Lipases are promising improvers of cake batter and baking properties. Their suitability for use in various cake formulations cannot be predicted yet, because the reactions that lead to macroscopic effects need to be unravelled. Therefore, the lipidome of three different cake recipes with and without lipase treatment was assessed by ultra high performance liquid chromatography-mass spectrometry before and after baking. By comparing the reaction patterns of seven different lipases in the recipes with known effects on texture, we show that lipase substrate specificity impacts baking quality. Key reactions for the recipes were identified with the help of principal component analysis. In the eggless basic cake, glyceroglycolipids are causal for baking improvement. In pound cake, lysoglycerophospholipids were linked to textural effects. Lipase substrate specificity was shown to be dependent on the recipe. Further research is needed to understand how recipes can be adjusted to achieve optimal lipase substrate specificity for desirable batter and baking properties.

2.
Food Chem X ; 15: 100442, 2022 Oct 30.
Article in English | MEDLINE | ID: mdl-36211741

ABSTRACT

Lipases are commonly used as clean-label improvers for bread. However, their potential use in cakes with different formulations remains unknown. The aim was to analyze the effects of seven baking lipases on three different cake formulations (an eggless cake, a pound cake with eggs and a yeast-based cake) in comparison to a traditional emulsifier. Product density, water loss during baking and product texture were assessed. If and to what extent the product quality was improved depended on both the lipase and the cake formulation. Lipase-induced effects mostly exceeded those of the emulsifier and were most pronounced in formulations without intrinsic emulsifiers like eggs. The lipases differed in their extent of improvement, hinting at the importance of their specific reactivity patterns and the resulting range of interactions with macromolecules. Further research is needed to unravel the mechanistic background of baking quality improvement in cakes.

SELECTION OF CITATIONS
SEARCH DETAIL
...