Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
2.
Free Radic Biol Med ; 163: 268-280, 2021 02 01.
Article in English | MEDLINE | ID: mdl-33359261

ABSTRACT

Chagas disease caused by Trypanosoma cruzi parasite is an endemic infection in America. It is well known that T. cruzi causes a strong immunosuppression during the acute phase of infection. However, it is not clear whether T. cruzi infection is related to metabolic alterations in CD4 T cells that prevent downstream effector function. Here, we evaluated the CD4 T cell metabolic and mitochondrial profiles from non-infected (NI), acute phase (AP) and chronic phase (CP) T. cruzi infected mice. CD4 T cells from all groups showed increased glucose uptake after stimulation. Moreover, the bioenergetic analysis revealed a rise in glycolysis and a higher oxidative metabolism in CD4 T cells from the AP. These cells showed increased proton leak and uncoupling protein 3 (UCP3) expression that correlated with mitochondrial ROS (mROS) accumulation, mitochondrial membrane potential (MMP) depolarization and expression of PD-1. In addition, CD4 T cells with mitochondrial alteration displayed an activated phenotype, and were less functional and more prone to apoptosis. In contrast, mitochondrial alterations were not observed during in vivo activation of CD4 T cells in a model of OVA-immunization. The Mn-superoxide dismutase (SOD2) expression, which is involved in mROS detoxification, was increased during the AP and CP of infection. Remarkably, the apoptosis observed in CD4 T cells with MMP depolarization was prevented by incubation with N-acetyl cysteine (NAC). Thus, our results showed that infection triggered an exacerbated metabolism together with mROS production in CD4 T cells from the AP of infection. However, antioxidant availability may not be sufficient to avoid mitochondrial alterations rendering these cells more susceptible to apoptosis. Our investigation is the first to demonstrate an association between a disturbed metabolism and an impaired CD4 T cell response during T. cruzi infection.


Subject(s)
Chagas Disease , Trypanosoma cruzi , Animals , Apoptosis , CD4-Positive T-Lymphocytes , Chagas Disease/genetics , Mice , Reactive Oxygen Species
3.
Immunobiology ; 215(5): 413-26, 2010 May.
Article in English | MEDLINE | ID: mdl-19581017

ABSTRACT

Chagas disease is a chronic inflammatory disease caused by infection with Trypanosoma cruzi. Although it had a decline in recent years, it still affects millions of people in Latin America. The host immune response against this parasite is complex and relies on the development of an efficient T cell-mediated response; however, T. cruzi displays a number of evasion mechanisms allowing it to remain undetected even for years. One of these is the secretion of anti-inflammatory molecules such as proteases and the modulation of biological functions of chemokines. Our objective was to analyze the effect of a major cysteine protease, cruzipain, on a number of critical functions of several CC chemokines, both in vitro and in vivo. Initially, using a murine model of T. cruzi infection, we demonstrated that CCL-2 and CCL-12 chemokines are highly expressed at different stages and correlated with an increase in the expression of cruzipain. In addition, we demonstrated that cruzipain is capable of differentially cleaving CCL-2 and CCL-12 chemokines, as well as CCL-13. Analysis of the proteolysed products identified unique cleavage sites in these chemokines. These cruzipain-modified chemokine products were tested in chemotaxis assays using monocytic cells. We found that cruzipain treated-CCL-2 maintained its biological activity, in contrast to the closely related CCL-12 and CCL-13 chemokines, which showed little or null agonist activity after treatment. Furthermore, based on this analysis, a 14-mer cruzipain-derived chemokine peptide (CDCP-1) was chemically synthesized and tested for agonist activity using in vitro chemotaxis assays. Interestingly, CDCP-1 showed antagonist activity affecting in vitro migration of monocytic cells and calcium flux release. In conclusion, our results demonstrate that cruzipain modulates biological functions of chemokines through proteolytic cleavage, by generating chemokine-derived peptides with antagonist activities. This event could play a role during the latest phases of Chagas disease, when the parasite may differentially modulate chemokine-mediated inflammatory responses.


Subject(s)
Antigens, Protozoan/metabolism , Chagas Disease/immunology , Chemokines, CC/metabolism , Cysteine Endopeptidases/metabolism , Trypanosoma cruzi/enzymology , Amino Acid Sequence , Animals , Cell Line , Chemokines, CC/immunology , Chromatography, High Pressure Liquid , Female , Humans , Mice , Mice, Inbred BALB C , Molecular Sequence Data , Muscle, Skeletal/immunology , Myocardium/immunology , Peptides/analysis , Peptides/chemistry , Protozoan Proteins
SELECTION OF CITATIONS
SEARCH DETAIL
...