Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 83
Filter
1.
Elife ; 92020 03 25.
Article in English | MEDLINE | ID: mdl-32209227

ABSTRACT

To facilitate smoking genetics research we determined whether a screen of mutagenized zebrafish for nicotine preference could predict loci affecting smoking behaviour. From 30 screened F3 sibling groups, where each was derived from an individual ethyl-nitrosurea mutagenized F0 fish, two showed increased or decreased nicotine preference. Out of 25 inactivating mutations carried by the F3 fish, one in the slit3 gene segregated with increased nicotine preference in heterozygous individuals. Focussed SNP analysis of the human SLIT3 locus in cohorts from UK (n=863) and Finland (n=1715) identified two variants associated with cigarette consumption and likelihood of cessation. Characterisation of slit3 mutant larvae and adult fish revealed decreased sensitivity to the dopaminergic and serotonergic antagonist amisulpride, known to affect startle reflex that is correlated with addiction in humans, and increased htr1aa mRNA expression in mutant larvae. No effect on neuronal pathfinding was detected. These findings reveal a role for SLIT3 in development of pathways affecting responses to nicotine in zebrafish and smoking in humans.


Subject(s)
Conditioning, Classical/physiology , Intracellular Signaling Peptides and Proteins/genetics , Membrane Proteins/genetics , Nicotine/administration & dosage , Tobacco Smoking/genetics , Zebrafish Proteins/genetics , Amisulpride/pharmacology , Animals , Bupropion/pharmacology , Choice Behavior , Conditioning, Classical/drug effects , Female , Genetic Loci , Humans , Male , Mutation , Polymorphism, Single Nucleotide , Receptor, Serotonin, 5-HT1A/physiology , Zebrafish
2.
EMBO Rep ; 20(11): e47967, 2019 11 05.
Article in English | MEDLINE | ID: mdl-31566294

ABSTRACT

Dystroglycan, an extracellular matrix receptor, has essential functions in various tissues. Loss of α-dystroglycan-laminin interaction due to defective glycosylation of α-dystroglycan underlies a group of congenital muscular dystrophies often associated with brain malformations, referred to as dystroglycanopathies. The lack of isogenic human dystroglycanopathy cell models has limited our ability to test potential drugs in a human- and neural-specific context. Here, we generated induced pluripotent stem cells (iPSCs) from a severe dystroglycanopathy patient with homozygous FKRP (fukutin-related protein gene) mutation. We showed that CRISPR/Cas9-mediated gene correction of FKRP restored glycosylation of α-dystroglycan in iPSC-derived cortical neurons, whereas targeted gene mutation of FKRP in wild-type cells disrupted this glycosylation. In parallel, we screened 31,954 small molecule compounds using a mouse myoblast line for increased glycosylation of α-dystroglycan. Using human FKRP-iPSC-derived neural cells for hit validation, we demonstrated that compound 4-(4-bromophenyl)-6-ethylsulfanyl-2-oxo-3,4-dihydro-1H-pyridine-5-carbonitrile (4BPPNit) significantly augmented glycosylation of α-dystroglycan, in part through upregulation of LARGE1 glycosyltransferase gene expression. Together, isogenic human iPSC-derived cells represent a valuable platform for facilitating dystroglycanopathy drug discovery and therapeutic development.


Subject(s)
Drug Evaluation, Preclinical , Dystroglycans/metabolism , Induced Pluripotent Stem Cells/metabolism , Base Sequence , CRISPR-Cas Systems , Cells, Cultured , Drug Evaluation, Preclinical/methods , Dystroglycans/genetics , Gene Editing , Gene Targeting , Genetic Loci , Glycosylation/drug effects , High-Throughput Nucleotide Sequencing , Humans , Molecular Imaging , Muscular Dystrophies/drug therapy , Muscular Dystrophies/etiology , Muscular Dystrophies/metabolism , Mutation , N-Acetylglucosaminyltransferases/genetics , N-Acetylglucosaminyltransferases/metabolism , Neural Stem Cells/metabolism , Neurons/metabolism , Pentosyltransferases/genetics , Pentosyltransferases/metabolism
3.
PLoS Genet ; 15(6): e1008213, 2019 06.
Article in English | MEDLINE | ID: mdl-31199790

ABSTRACT

The neural crest (NC) is a vertebrate-specific cell type that contributes to a wide range of different tissues across all three germ layers. The gene regulatory network (GRN) responsible for the formation of neural crest is conserved across vertebrates. Central to the induction of the NC GRN are AP-2 and SoxE transcription factors. NC induction robustness is ensured through the ability of some of these transcription factors to compensate loss of function of gene family members. However the gene regulatory events underlying compensation are poorly understood. We have used gene knockout and RNA sequencing strategies to dissect NC induction and compensation in zebrafish. We genetically ablate the NC using double mutants of tfap2a;tfap2c or remove specific subsets of the NC with sox10 and mitfa knockouts and characterise genome-wide gene expression levels across multiple time points. We find that compensation through a single wild-type allele of tfap2c is capable of maintaining early NC induction and differentiation in the absence of tfap2a function, but many target genes have abnormal expression levels and therefore show sensitivity to the reduced tfap2 dosage. This separation of morphological and molecular phenotypes identifies a core set of genes required for early NC development. We also identify the 15 somites stage as the peak of the molecular phenotype which strongly diminishes at 24 hpf even as the morphological phenotype becomes more apparent. Using gene knockouts, we associate previously uncharacterised genes with pigment cell development and establish a role for maternal Hippo signalling in melanocyte differentiation. This work extends and refines the NC GRN while also uncovering the transcriptional basis of genetic compensation via paralogues.


Subject(s)
Embryonic Development/genetics , Neural Crest/growth & development , SOXE Transcription Factors/genetics , Transcription Factor AP-2/genetics , Zebrafish Proteins/genetics , Animals , Cell Differentiation/genetics , Cell Lineage/genetics , Embryo, Nonmammalian , Gene Expression Regulation, Developmental/genetics , Gene Regulatory Networks/genetics , Melanocytes/metabolism , Microphthalmia-Associated Transcription Factor/genetics , Neural Crest/metabolism , Pigmentation/genetics , Protein Serine-Threonine Kinases/genetics , Serine-Threonine Kinase 3 , Zebrafish/genetics , Zebrafish/growth & development
4.
Nat Commun ; 10(1): 2792, 2019 06 26.
Article in English | MEDLINE | ID: mdl-31243271

ABSTRACT

The Deciphering the Mechanisms of Developmental Disorders programme has analysed the morphological and molecular phenotypes of embryonic and perinatal lethal mouse mutant lines in order to investigate the causes of embryonic lethality. Here we show that individual whole-embryo RNA-seq of 73 mouse mutant lines (>1000 transcriptomes) identifies transcriptional events underlying embryonic lethality and associates previously uncharacterised genes with specific pathways and tissues. For example, our data suggest that Hmgxb3 is involved in DNA-damage repair and cell-cycle regulation. Further, we separate embryonic delay signatures from mutant line-specific transcriptional changes by developing a baseline mRNA expression catalogue of wild-type mice during early embryogenesis (4-36 somites). Analysis of transcription outside coding sequence identifies deregulation of repetitive elements in Morc2a mutants and a gene involved in gene-specific splicing. Collectively, this work provides a large scale resource to further our understanding of early embryonic developmental disorders.


Subject(s)
Embryo, Mammalian/metabolism , Sequence Analysis, RNA , Transcription, Genetic , Animals , Gene Expression Regulation, Developmental , Mice , Mutation , Transcriptome
5.
PLoS Genet ; 15(2): e1007941, 2019 02.
Article in English | MEDLINE | ID: mdl-30811380

ABSTRACT

Skin pigment patterns are important, being under strong selection for multiple roles including camouflage and UV protection. Pigment cells underlying these patterns form from adult pigment stem cells (APSCs). In zebrafish, APSCs derive from embryonic neural crest cells, but sit dormant until activated to produce pigment cells during metamorphosis. The APSCs are set-aside in an ErbB signaling dependent manner, but the mechanism maintaining quiescence until metamorphosis remains unknown. Mutants for a pigment pattern gene, parade, exhibit ectopic pigment cells localised to the ventral trunk, but also supernumerary cells restricted to the Ventral Stripe. Contrary to expectations, these melanocytes and iridophores are discrete cells, but closely apposed. We show that parade encodes Endothelin receptor Aa, expressed in the blood vessels, most prominently in the medial blood vessels, consistent with the ventral trunk phenotype. We provide evidence that neuronal fates are not affected in parade mutants, arguing against transdifferentiation of sympathetic neurons to pigment cells. We show that inhibition of BMP signaling prevents specification of sympathetic neurons, indicating conservation of this molecular mechanism with chick and mouse. However, inhibition of sympathetic neuron differentiation does not enhance the parade phenotype. Instead, we pinpoint ventral trunk-restricted proliferation of neural crest cells as an early feature of the parade phenotype. Importantly, using a chemical genetic screen for rescue of the ectopic pigment cell phenotype of parade mutants (whilst leaving the embryonic pattern untouched), we identify ErbB inhibitors as a key hit. The time-window of sensitivity to these inhibitors mirrors precisely the window defined previously as crucial for the setting aside of APSCs in the embryo, strongly implicating adult pigment stem cells as the source of the ectopic pigment cells. We propose that a novel population of APSCs exists in association with medial blood vessels, and that their quiescence is dependent upon Endothelin-dependent factors expressed by the blood vessels.


Subject(s)
Adult Stem Cells/cytology , Adult Stem Cells/metabolism , ErbB Receptors/metabolism , Pigments, Biological/metabolism , Receptor, Endothelin A/metabolism , Zebrafish Proteins/metabolism , Animals , Cell Differentiation , Cell Proliferation , ErbB Receptors/antagonists & inhibitors , Melanocytes/cytology , Melanocytes/metabolism , Melanophores/cytology , Melanophores/metabolism , Models, Biological , Mutation , Neural Crest/cytology , Neural Crest/metabolism , Phenotype , Receptor, Endothelin A/genetics , Signal Transduction , Skin Pigmentation/genetics , Zebrafish/genetics , Zebrafish/growth & development , Zebrafish/metabolism , Zebrafish Proteins/antagonists & inhibitors , Zebrafish Proteins/genetics
6.
Elife ; 62017 11 16.
Article in English | MEDLINE | ID: mdl-29144233

ABSTRACT

We have produced an mRNA expression time course of zebrafish development across 18 time points from 1 cell to 5 days post-fertilisation sampling individual and pools of embryos. Using poly(A) pulldown stranded RNA-seq and a 3' end transcript counting method we characterise temporal expression profiles of 23,642 genes. We identify temporal and functional transcript co-variance that associates 5024 unnamed genes with distinct developmental time points. Specifically, a class of over 100 previously uncharacterised zinc finger domain containing genes, located on the long arm of chromosome 4, is expressed in a sharp peak during zygotic genome activation. In addition, the data reveal new genes and transcripts, differential use of exons and previously unidentified 3' ends across development, new primary microRNAs and temporal divergence of gene paralogues generated in the teleost genome duplication. To make this dataset a useful baseline reference, the data can be browsed and downloaded at Expression Atlas and Ensembl.


Subject(s)
Embryonic Development , Gene Expression Regulation, Developmental , RNA, Messenger/biosynthesis , Zebrafish/embryology , Animals , Gene Expression Profiling , Sequence Analysis, RNA , Time Factors
7.
Genetics ; 207(2): 609-623, 2017 10.
Article in English | MEDLINE | ID: mdl-28835471

ABSTRACT

Large-scale forward genetic screens have been instrumental for identifying genes that regulate development, homeostasis, and regeneration, as well as the mechanisms of disease. The zebrafish, Danio rerio, is an established genetic and developmental model used in genetic screens to uncover genes necessary for early development. However, the regulation of postembryonic development has received less attention as these screens are more labor intensive and require extensive resources. The lack of systematic interrogation of late development leaves large aspects of the genetic regulation of adult form and physiology unresolved. To understand the genetic control of postembryonic development, we performed a dominant screen for phenotypes affecting the adult zebrafish. In our screen, we identified 72 adult viable mutants showing changes in the shape of the skeleton as well as defects in pigmentation. For efficient mapping of these mutants and mutation identification, we devised a new mapping strategy based on identification of mutant-specific haplotypes. Using this method in combination with a candidate gene approach, we were able to identify linked mutations for 22 out of 25 mutants analyzed. Broadly, our mutational analysis suggests that there are key genes and pathways associated with late development. Many of these pathways are shared with humans and are affected in various disease conditions, suggesting constraint in the genetic pathways that can lead to change in adult form. Taken together, these results show that dominant screens are a feasible and productive means to identify mutations that can further our understanding of gene function during postembryonic development and in disease.


Subject(s)
Bone Development/genetics , Genes, Dominant , Mutagenesis , Skin Pigmentation/genetics , Zebrafish/genetics , Animals , Haplotypes , Phenotype , Zebrafish/growth & development , Zebrafish Proteins/genetics
8.
PLoS Genet ; 13(8): e1006959, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28806732

ABSTRACT

KDM2A is a histone demethylase associated with transcriptional silencing, however very little is known about its in vivo role in development and disease. Here we demonstrate that loss of the orthologue kdm2aa in zebrafish causes widespread transcriptional disruption and leads to spontaneous melanomas at a high frequency. Fish homozygous for two independent premature stop codon alleles show reduced growth and survival, a strong male sex bias, and homozygous females exhibit a progressive oogenesis defect. kdm2aa mutant fish also develop melanomas from early adulthood onwards which are independent from mutations in braf and other common oncogenes and tumour suppressors as revealed by deep whole exome sequencing. In addition to effects on translation and DNA replication gene expression, high-replicate RNA-seq in morphologically normal individuals demonstrates a stable regulatory response of epigenetic modifiers and the specific de-repression of a group of zinc finger genes residing in constitutive heterochromatin. Together our data reveal a complex role for Kdm2aa in regulating normal mRNA levels and carcinogenesis. These findings establish kdm2aa mutants as the first single gene knockout model of melanoma biology.


Subject(s)
Jumonji Domain-Containing Histone Demethylases/genetics , Melanoma/genetics , Proto-Oncogene Proteins B-raf/genetics , Zebrafish Proteins/genetics , Zebrafish/genetics , Animals , DNA Replication , Disease Models, Animal , Epigenesis, Genetic , Exome , Female , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Gene Knockout Techniques , Male , Mutation , RNA, Messenger/genetics , RNA, Messenger/metabolism , Sequence Analysis, RNA , Zebrafish/embryology
9.
Cell Rep ; 19(13): 2782-2795, 2017 06 27.
Article in English | MEDLINE | ID: mdl-28658625

ABSTRACT

T-box transcription factors T/Brachyury homolog A (Ta) and Tbx16 are essential for correct mesoderm development in zebrafish. The downstream transcriptional networks guiding their functional activities are poorly understood. Additionally, important contributions elsewhere are likely masked due to redundancy. Here, we exploit functional genomic strategies to identify Ta and Tbx16 targets in early embryogenesis. Surprisingly, we discovered they not only activate mesodermal gene expression but also redundantly regulate key endodermal determinants, leading to substantial loss of endoderm in double mutants. To further explore the gene regulatory networks (GRNs) governing endoderm formation, we identified targets of Ta/Tbx16-regulated homeodomain transcription factor Mixl1, which is absolutely required in zebrafish for endoderm formation. Interestingly, we find many endodermal determinants coordinately regulated through common genomic occupancy by Mixl1, Eomesa, Smad2, Nanog, Mxtx2, and Pou5f3. Collectively, these findings augment the endoderm GRN and reveal a panel of target genes underlying the Ta, Tbx16, and Mixl1 mutant phenotypes.


Subject(s)
Endoderm/metabolism , Transcription Factors/metabolism , Animals , Cell Differentiation , Zebrafish
10.
Wellcome Open Res ; 2: 77, 2017.
Article in English | MEDLINE | ID: mdl-29568807

ABSTRACT

BACKGROUND: Mutations in proteins involved in telomere maintenance lead to a range of human diseases, including dyskeratosis congenita, idiopathic pulmonary fibrosis and cancer. Telomerase functions to add telomeric repeats back onto the ends of chromosomes, however non-canonical roles of components of telomerase have recently been suggested. METHODS: Here we use a zebrafish telomerase mutant which harbours a nonsense mutation in tert to investigate the adult phenotypes of fish derived from heterozygous parents of different ages. Furthermore we use whole genome sequencing data to estimate average telomere lengths. RESULTS: We show that homozygous offspring from older heterozygotes exhibit signs of body wasting at a younger age than those of younger parents, and that offspring of older heterozygous parents weigh less irrespective of genotype. We also demonstrate that tert homozygous mutant fish have a male sex bias, and that clutches from older parents also have a male sex bias in the heterozygous and wild-type populations. Telomere length analysis reveals that the telomeres of younger heterozygous parents are shorter than those of older heterozygous parents. CONCLUSIONS: These data indicate that the phenotypes observed in offspring from older parents cannot be explained by telomere length. Instead we propose that Tert functions outside of telomere length maintenance in an age-dependent manner to influence the adult phenotypes of the next generation.

11.
Proc Natl Acad Sci U S A ; 113(34): E5014-23, 2016 08 23.
Article in English | MEDLINE | ID: mdl-27493218

ABSTRACT

Antigen processing and presentation genes found within the MHC are among the most highly polymorphic genes of vertebrate genomes, providing populations with diverse immune responses to a wide array of pathogens. Here, we describe transcriptome, exome, and whole-genome sequencing of clonal zebrafish, uncovering the most extensive diversity within the antigen processing and presentation genes of any species yet examined. Our CG2 clonal zebrafish assembly provides genomic context within a remarkably divergent haplotype of the core MHC region on chromosome 19 for six expressed genes not found in the zebrafish reference genome: mhc1uga, proteasome-ß 9b (psmb9b), psmb8f, and previously unknown genes psmb13b, tap2d, and tap2e We identify ancient lineages for Psmb13 within a proteasome branch previously thought to be monomorphic and provide evidence of substantial lineage diversity within each of three major trifurcations of catalytic-type proteasome subunits in vertebrates: Psmb5/Psmb8/Psmb11, Psmb6/Psmb9/Psmb12, and Psmb7/Psmb10/Psmb13. Strikingly, nearby tap2 and MHC class I genes also retain ancient sequence lineages, indicating that alternative lineages may have been preserved throughout the entire MHC pathway since early diversification of the adaptive immune system ∼500 Mya. Furthermore, polymorphisms within the three MHC pathway steps (antigen cleavage, transport, and presentation) are each predicted to alter peptide specificity. Lastly, comparative analysis shows that antigen processing gene diversity is far more extensive than previously realized (with ancient coelacanth psmb8 lineages, shark psmb13, and tap2t and psmb10 outside the teleost MHC), implying distinct immune functions and conserved roles in shaping MHC pathway evolution throughout vertebrates.


Subject(s)
Biological Evolution , Cysteine Endopeptidases/genetics , Genome , Haplotypes , Histocompatibility Antigens Class I/genetics , Zebrafish Proteins/genetics , Zebrafish/genetics , Animals , Antigen Presentation , Cloning, Organism , Cysteine Endopeptidases/classification , Cysteine Endopeptidases/immunology , High-Throughput Nucleotide Sequencing , Histocompatibility Antigens Class I/classification , Histocompatibility Antigens Class I/immunology , Phylogeny , Proteasome Endopeptidase Complex/genetics , Proteasome Endopeptidase Complex/immunology , Protein Isoforms/classification , Protein Isoforms/genetics , Protein Isoforms/immunology , Transcriptome , Zebrafish/classification , Zebrafish/immunology , Zebrafish Proteins/classification , Zebrafish Proteins/immunology
12.
Elife ; 52016 04 29.
Article in English | MEDLINE | ID: mdl-27130732

ABSTRACT

Multiple glycosyltransferases are essential for the proper modification of alpha-dystroglycan, as mutations in the encoding genes cause congenital/limb-girdle muscular dystrophies. Here we elucidate further the structure of an O-mannose-initiated glycan on alpha-dystroglycan that is required to generate its extracellular matrix-binding polysaccharide. This functional glycan contains a novel ribitol structure that links a phosphotrisaccharide to xylose. ISPD is a CDP-ribitol (ribose) pyrophosphorylase that generates the reduced sugar nucleotide for the insertion of ribitol in a phosphodiester linkage to the glycoprotein. TMEM5 is a UDP-xylosyl transferase that elaborates the structure. We demonstrate in a zebrafish model as well as in a human patient that defects in TMEM5 result in muscular dystrophy in combination with abnormal brain development. Thus, we propose a novel structure-a ribitol in a phosphodiester linkage-for the moiety on which TMEM5, B4GAT1, and LARGE act to generate the functional receptor for ECM proteins having LG domains.


Subject(s)
Dystroglycans/chemistry , Dystroglycans/metabolism , Extracellular Matrix/metabolism , Membrane Proteins/metabolism , Polysaccharides/analysis , Animals , Humans , Mannose/analysis , Nucleotidyltransferases/metabolism , Pentosyltransferases , Protein Binding , Ribitol/analysis , Zebrafish
13.
BMC Genomics ; 17: 259, 2016 Mar 24.
Article in English | MEDLINE | ID: mdl-27009152

ABSTRACT

BACKGROUND: The CRISPR/Cas9 system is a prokaryotic immune system that infers resistance to foreign genetic material and is a sort of 'adaptive immunity'. It has been adapted to enable high throughput genome editing and has revolutionised the generation of targeted mutations. RESULTS: We have developed a scalable analysis pipeline to identify CRISPR/Cas9 induced mutations in hundreds of samples using next generation sequencing (NGS) of amplicons. We have used this system to investigate the best way to screen mosaic Zebrafish founder individuals for germline transmission of induced mutations. Screening sperm samples from potential founders provides much better information on germline transmission rates and crucially the sequence of the particular insertions/deletions (indels) that will be transmitted. This enables us to combine screening with archiving to create a library of cryopreserved samples carrying known mutations. It also allows us to design efficient genotyping assays, making identifying F1 carriers straightforward. CONCLUSIONS: The methods described will streamline the production of large numbers of knockout alleles in selected genes for phenotypic analysis, complementing existing efforts using random mutagenesis.


Subject(s)
CRISPR-Cas Systems/genetics , INDEL Mutation , Spermatozoa/cytology , Zebrafish/genetics , Alleles , Animals , Genotyping Techniques , High-Throughput Nucleotide Sequencing , Male , RNA, Guide, Kinetoplastida/genetics
14.
PLoS Genet ; 11(12): e1005677, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26624285

ABSTRACT

Ribosome biogenesis is a ubiquitous and essential process in cells. Defects in ribosome biogenesis and function result in a group of human disorders, collectively known as ribosomopathies. In this study, we describe a zebrafish mutant with a loss-of-function mutation in nol9, a gene that encodes a non-ribosomal protein involved in rRNA processing. nol9sa1022/sa1022 mutants have a defect in 28S rRNA processing. The nol9sa1022/sa1022 larvae display hypoplastic pancreas, liver and intestine and have decreased numbers of hematopoietic stem and progenitor cells (HSPCs), as well as definitive erythrocytes and lymphocytes. In addition, ultrastructural analysis revealed signs of pathological processes occurring in endothelial cells of the caudal vein, emphasizing the complexity of the phenotype observed in nol9sa1022/sa1022 larvae. We further show that both the pancreatic and hematopoietic deficiencies in nol9sa1022/sa1022 embryos were due to impaired cell proliferation of respective progenitor cells. Interestingly, genetic loss of Tp53 rescued the HSPCs but not the pancreatic defects. In contrast, activation of mRNA translation via the mTOR pathway by L-Leucine treatment did not revert the erythroid or pancreatic defects. Together, we present the nol9sa1022/sa1022 mutant, a novel zebrafish ribosomopathy model, which recapitulates key human disease characteristics. The use of this genetically tractable model will enhance our understanding of the tissue-specific mechanisms following impaired ribosome biogenesis in the context of an intact vertebrate.


Subject(s)
Morphogenesis/genetics , Polynucleotide 5'-Hydroxyl-Kinase/biosynthesis , Ribosomes/genetics , Tumor Suppressor Protein p53/genetics , Animals , Disease Models, Animal , Hematopoiesis/genetics , Hematopoietic Stem Cells/pathology , Humans , Pancreas/metabolism , Pancreas/pathology , Polynucleotide 5'-Hydroxyl-Kinase/genetics , RNA, Ribosomal, 28S/genetics , Ribosomes/pathology , Zebrafish
15.
BMC Genomics ; 16: 578, 2015 Aug 05.
Article in English | MEDLINE | ID: mdl-26238335

ABSTRACT

BACKGROUND: We present a genome-wide messenger RNA (mRNA) sequencing technique that converts small amounts of RNA from many samples into molecular phenotypes. It encompasses all steps from sample preparation to sequence analysis and is applicable to baseline profiling or perturbation measurements. RESULTS: Multiplex sequencing of transcript 3' ends identifies differential transcript abundance independent of gene annotation. We show that increasing biological replicate number while maintaining the total amount of sequencing identifies more differentially abundant transcripts. CONCLUSIONS: This method can be implemented on polyadenylated RNA from any organism with an annotated reference genome and in any laboratory with access to Illumina sequencing.


Subject(s)
Genetic Association Studies , Genome-Wide Association Study , High-Throughput Nucleotide Sequencing , Molecular Typing , RNA, Messenger/genetics , Sequence Analysis, RNA , Animals , Computational Biology/methods , Gene Expression Profiling/methods , Gene Library , Genetic Association Studies/methods , Genome-Wide Association Study/methods , Molecular Typing/methods , Mutation , Zebrafish
16.
Acta Neuropathol ; 130(3): 389-406, 2015 Sep.
Article in English | MEDLINE | ID: mdl-25931053

ABSTRACT

Nemaline myopathy is characterized by muscle weakness and the presence of rod-like (nemaline) bodies. The genetic etiology of nemaline myopathy is becoming increasingly understood with mutations in ten genes now known to cause the disease. Despite this, the mechanism by which skeletal muscle weakness occurs remains elusive, with previous studies showing no correlation between the frequency of nemaline bodies and disease severity. To investigate the formation of nemaline bodies and their role in pathogenesis, we generated overexpression and loss-of-function zebrafish models for skeletal muscle α-actin (ACTA1) and nebulin (NEB). We identify three distinct types of nemaline bodies and visualize their formation in vivo, demonstrating these nemaline bodies not only exhibit different subcellular origins, but also have distinct pathological consequences within the skeletal muscle. One subtype is highly dynamic and upon breakdown leads to the accumulation of cytoplasmic actin contributing to muscle weakness. Examination of a Neb-deficient model suggests this mechanism may be common in nemaline myopathy. Another subtype results from a reduction of actin and forms a more stable cytoplasmic body. In contrast, the final type originates at the Z-disk and is associated with myofibrillar disorganization. Analysis of zebrafish and muscle biopsies from ACTA1 nemaline myopathy patients demonstrates that nemaline bodies also possess a different protein signature. In addition, we show that the ACTA1(D286G) mutation causes impaired actin incorporation and localization in the sarcomere. Together these data provide a novel examination of nemaline body origins and dynamics in vivo and identifies pathological changes that correlate with muscle weakness.


Subject(s)
Muscle, Skeletal/pathology , Muscle, Skeletal/physiopathology , Myopathies, Nemaline/pathology , Myopathies, Nemaline/physiopathology , Actinin/genetics , Actinin/metabolism , Actins/metabolism , Animals , Animals, Genetically Modified , Cytoplasm/metabolism , Cytoplasm/pathology , Disease Models, Animal , Gene Knockdown Techniques , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Morpholinos , Muscle Proteins/genetics , Muscle Proteins/metabolism , Muscle Weakness/pathology , Muscle Weakness/physiopathology , Mutation , Phenotype , Sarcomeres/metabolism , Sarcomeres/pathology , Zebrafish , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism
17.
Sci Transl Med ; 7(286): 286ra67, 2015 May 06.
Article in English | MEDLINE | ID: mdl-25947162

ABSTRACT

Biliary atresia (BA) is a rapidly progressive and destructive fibrotic disorder of unknown etiology affecting the extrahepatic biliary tree of neonates. Epidemiological studies suggest that an environmental factor, such as a virus or toxin, is the cause of the disease, although none have been definitively established. Several naturally occurring outbreaks of BA in Australian livestock have been associated with the ingestion of unusual plants by pregnant animals during drought conditions. We used a biliary secretion assay in zebrafish to isolate a previously undescribed isoflavonoid, biliatresone, from Dysphania species implicated in a recent BA outbreak. This compound caused selective destruction of the extrahepatic, but not intrahepatic, biliary system of larval zebrafish. A mutation that enhanced biliatresone toxicity mapped to a region of the zebrafish genome that has conserved synteny with an established human BA susceptibility locus. The toxin also caused loss of cilia in neonatal mouse extrahepatic cholangiocytes in culture and disrupted cell polarity and monolayer integrity in cholangiocyte spheroids. Together, these findings provide direct evidence that BA could be initiated by perinatal exposure to an environmental toxin.


Subject(s)
Amaranthaceae/chemistry , Biliary Atresia/etiology , Flavonoids/chemistry , Plant Extracts/chemistry , Animals , Australia , Biliary Atresia/pathology , Biliary Atresia/veterinary , Biological Assay , Cattle , Disease Models, Animal , Exome , Genetic Predisposition to Disease , Humans , Immunity, Innate , Mice , Microscopy, Confocal , Mutation , Rats , Sheep , Zebrafish
18.
Dev Biol ; 397(2): 212-24, 2015 Jan 15.
Article in English | MEDLINE | ID: mdl-25478908

ABSTRACT

The RAB5 gene family is the best characterised of all human RAB families and is essential for in vitro homotypic fusion of early endosomes. In recent years, the disruption or activation of Rab5 family proteins has been used as a tool to understand growth factor signal transduction in whole animal systems such as Drosophila melanogaster and zebrafish. In this study we have examined the functions for four rab5 genes in zebrafish. Disruption of rab5ab expression by antisense morpholino oligonucleotide (MO) knockdown abolishes nodal signalling in early zebrafish embryos, whereas overexpression of rab5ab mRNA leads to ectopic expression of markers that are normally downstream of nodal signalling. By contrast MO disruption of other zebrafish rab5 genes shows little or no effect on expression of markers of dorsal organiser development. We conclude that rab5ab is essential for nodal signalling and organizer specification in the developing zebrafish embryo.


Subject(s)
Nodal Signaling Ligands/metabolism , Organizers, Embryonic/embryology , Signal Transduction/physiology , Zebrafish/embryology , Zebrafish/genetics , rab5 GTP-Binding Proteins/metabolism , Animals , Gene Knockdown Techniques , In Situ Hybridization , Microscopy, Electron , Morpholinos/genetics , Reverse Transcriptase Polymerase Chain Reaction , Zebrafish/metabolism , rab5 GTP-Binding Proteins/genetics
19.
Development ; 141(20): 3834-41, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25294937

ABSTRACT

The initial phases of embryonic development occur in the absence of de novo transcription and are instead controlled by maternally inherited mRNAs and proteins. During this initial period, cell cycles are synchronous and lack gap phases. Following this period of transcriptional silence, zygotic transcription begins, the maternal influence on development starts to decrease, and dramatic changes to the cell cycle take place. Here, we discuss recent work that is shedding light on the maternal to zygotic transition and the interrelated but distinct mechanisms regulating the onset of zygotic transcription and changes to the cell cycle during early embryonic development.


Subject(s)
Gene Expression Regulation, Developmental , Transcription, Genetic , Zygote/physiology , Animals , Apoptosis , Cell Cycle , DNA Replication , Drosophila melanogaster/embryology , Female , Fertilization , Gastrula/physiology , Gene Regulatory Networks , Humans , Mice , Mothers , Xenopus laevis/embryology
20.
BMC Biol ; 12: 81, 2014 Oct 03.
Article in English | MEDLINE | ID: mdl-25277163

ABSTRACT

BACKGROUND: Nodal signalling is an absolute requirement for normal mesoderm and endoderm formation in vertebrate embryos, yet the transcriptional networks acting directly downstream of Nodal and the extent to which they are conserved is largely unexplored, particularly in vivo. Eomesodermin also plays a role in patterning mesoderm and endoderm in vertebrates, but its mechanisms of action, and how it interacts with the Nodal signalling pathway are still unclear. RESULTS: Using a combination of ChIP-seq and expression analysis we identify direct targets of Smad2, the effector of Nodal signalling in blastula stage zebrafish embryos, including many novel target genes. Through comparison of these data with published ChIP-seq data in human, mouse and Xenopus we show that the transcriptional network driven by Smad2 in mesoderm and endoderm is conserved in these vertebrate species. We also show that Smad2 and zebrafish Eomesodermin a (Eomesa) bind common genomic regions proximal to genes involved in mesoderm and endoderm formation, suggesting Eomesa forms a general component of the Smad2 signalling complex in zebrafish. Combinatorial perturbation of Eomesa and Smad2-interacting factor Foxh1 results in loss of both mesoderm and endoderm markers, confirming the role of Eomesa in endoderm formation and its functional interaction with Foxh1 for correct Nodal signalling. Finally, we uncover a novel, role for Eomesa in repressing ectodermal genes in the early blastula. CONCLUSION: Our data demonstrate that evolutionarily conserved developmental functions of Nodal signalling occur through maintenance of the transcriptional network directed by Smad2. This network is modulated by Eomesa in zebrafish which acts to promote mesoderm and endoderm formation in combination with Nodal signalling, whilst Eomesa also opposes ectoderm gene expression. Eomesa therefore regulates the formation of all three germ layers in the early zebrafish embryo.


Subject(s)
Body Patterning , Gene Expression Regulation, Developmental , Smad2 Protein/genetics , T-Box Domain Proteins/genetics , Zebrafish Proteins/genetics , Zebrafish/genetics , Animals , Ectoderm/embryology , Ectoderm/metabolism , Embryo, Nonmammalian/embryology , Embryo, Nonmammalian/metabolism , Endoderm/embryology , Endoderm/metabolism , Gene Regulatory Networks , Mesoderm/embryology , Mesoderm/metabolism , Signal Transduction , Smad2 Protein/metabolism , T-Box Domain Proteins/metabolism , Zebrafish/embryology , Zebrafish/metabolism , Zebrafish Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...