Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Inorg Biochem ; 38(3): 175-83, 1990 Mar.
Article in English | MEDLINE | ID: mdl-2329344

ABSTRACT

Equilibrium constants for the sequential binding of two anions at the specific metal-binding sites of apotransferrin have been measured by difference ultraviolet spectroscopy in 0.1 M N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid (Hepes) at pH 7.4 and 25 degrees C. Log K1 values for phosphate, phosphite, sulfate, and arsenate fall in the narrow range of 3.5-4.0, while the log K1 for bicarbonate is 2.73. No binding is observed for nitrate, perchlorate, or borate. A dinegative charge appears to be the most important criterion for anion binding. Equilibrium constants have also been measured for binding of anions to both forms of mono(ferric)transferrin. There appears to be a very small site selectivity (0.2 to 0.4 log units) for phosphate, arsenate, and phosphite that favors binding to the N-terminal site, but there is no detectable selectivity for binding of sulfate or bicarbonate. Comparison of the binding affinities and anion selectivity with literature data on anion-binding to protonated macrocyles and cryptates strongly supports the existence of specific anion-binding sites on the protein. Binding constants were also measured in 0.01 M Hepes. The anionic sulfonate group of the buffer appears to have a small effect on anion binding.


Subject(s)
Anions/blood , Transferrin/metabolism , Binding Sites , Protein Binding , Spectrophotometry, Ultraviolet
2.
J Inorg Biochem ; 33(3): 211-23, 1988 Jul.
Article in English | MEDLINE | ID: mdl-2843602

ABSTRACT

The binding of zinc(II) to human serum transferrin has been studied as a function of the solution concentration of sodium bicarbonate in 100 mM, pH 7.4 hepes buffer at 25 degrees C. The apparent molar absorptivity of the zinc-transferrin complex has been determined from the initial slopes of titration curves of delta epsilon versus the ratio of [Zn]/[Tf]. This absorptivity represents the difference between the positive absorbance of the ternary Zn-HCO3-Tf species in the sample cuvette and the negative absorbance of binary HCO3-Tf species in the reference cuvette. Higher concentrations of bicarbonate increase the degree of saturation of apo-Tf with bicarbonate and thus increase the apparent absorptivity of the zinc-Tf complex. Titrations of apo- and monoferric transferrins with bicarbonate indicate that there is little, if any, difference in the bicarbonate binding constants of the two specific transferrin binding sites. An equilibrium constant of log K = 2.49 has been used to calculate the degree of saturation of the C-terminal binding site with bicarbonate. The zinc-binding affinity of this site depends linearly on this degree of saturation. The scatter in the zinc-binding constants of the weaker N-terminal site precludes a similar analysis of the bicarbonate-dependence of binding at this site. The results strongly support the previous proposal that binding of the synergistic bicarbonate anion is responsible for the uv absorption observed upon addition of bicarbonate to apoTf.


Subject(s)
Bicarbonates/pharmacology , Sodium/pharmacology , Transferrin/metabolism , Zinc/blood , Humans , Kinetics , Protein Binding , Sodium Bicarbonate , Spectrophotometry, Ultraviolet
SELECTION OF CITATIONS
SEARCH DETAIL
...