Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Pest Manag Sci ; 67(6): 656-64, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21337673

ABSTRACT

BACKGROUND: Quinoxyfen is a fungicide of the phenoxyquinoline class used to control powdery mildew, Uncinula necator (Schw.) Burr. Owing to its high persistence and strong sorption in soil, it could represent a risk for soil organisms if they are exposed at ecologically relevant concentrations. The objective of this paper is to predict the bioconcentration factors (BCFs) of quinoxyfen in earthworms, selected as a representative soil organism, and to assess the uncertainty in the estimation of this parameter. Three fields in each of four vineyards in southern and northern Italy were sampled over two successive years. RESULTS: The measured BCFs varied over time, possibly owing to seasonal changes and the consequent changes in behaviour and ecology of earthworms. Quinoxyfen did not accumulate in soil, as the mean soil concentrations at the end of the 2 year monitoring period ranged from 9.16 to 16.0 µg kg⁻¹ dw for the Verona province and from 23.9 to 37.5 µg kg⁻¹ dw for the Taranto province, with up to eight applications per season. To assess the uncertainty of the BCF in earthworms, a probabilistic approach was used, firstly by building with weighted bootstrapping techniques a generic probabilistic density function (PDF) accounting for variability and incompleteness of knowledge. The generic PDF was then used to derive prior distribution functions, which, by application of Bayes' theorem, were updated with the new measurements and a posterior distribution was finally created. CONCLUSION: The study is a good example of probabilistic risk assessment. The means of mean and SD posterior estimates of log BCFworm (2.06, 0.91) are the 'best estimate values'. Further risk assessment of quinoxyfen and other phenoxyquinoline fungicides and realistic representative scenarios for modelling exercises required for future authorization and post-authorization requirements can now use this value as input.


Subject(s)
Oligochaeta/chemistry , Pesticides/analysis , Plant Diseases/prevention & control , Quinolines/analysis , Soil/chemistry , Agriculture/methods , Animals , Ascomycota/drug effects , Bayes Theorem , Fungicides, Industrial/analysis , Italy , Pest Control/methods , Risk Assessment , Time Factors , Uncertainty , Vitis/microbiology
2.
Environ Toxicol Chem ; 29(11): 2417-25, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20886641

ABSTRACT

In the framework of environmental multimedia modeling studies dedicated to environmental and health risk assessments of chemicals, the bioconcentration factor (BCF) is a parameter commonly used, especially for fish. As for neutral lipophilic substances, it is assumed that BCF is independent of exposure levels of the substances. However, for metals some studies found the inverse relationship between BCF values and aquatic exposure concentrations for various aquatic species and metals, and also high variability in BCF data. To deal with the factors determining BCF for metals, we conducted regression analyses to evaluate the inverse relationships and introduce the concept of probability density function (PDF) for Cd, Cu, Zn, Pb, and As. In the present study, for building the regression model and derive the PDF of fish BCF, two statistical approaches are applied: ordinary regression analysis to estimate a regression model that does not consider the variation in data across different fish family groups; and hierarchical Bayesian regression analysis to estimate fish group-specific regression models. The results show that the BCF ranges and PDFs estimated for metals by both statistical approaches have less uncertainty than the variation of collected BCF data (the uncertainty is reduced by 9%-61%), and thus such PDFs proved to be useful to obtain accurate model predictions for environmental and health risk assessment concerning metals.


Subject(s)
Metals, Heavy/analysis , Perciformes/metabolism , Probability , Water Pollutants, Chemical/analysis , Animals , Databases, Factual , Fresh Water/chemistry , Metals, Heavy/toxicity , Perciformes/classification , Regression Analysis , Risk Assessment , Species Specificity , Water Pollutants, Chemical/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...