Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Ecol Evol ; 11(14): 9776-9790, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34306661

ABSTRACT

Northern range margin populations of the European fire-bellied toad (Bombina bombina) have rapidly declined during recent decades. Extensive agricultural land use has fragmented the landscape, leading to habitat disruption and loss, as well as eutrophication of ponds. In Northern Germany (Schleswig-Holstein) and Southern Sweden (Skåne), this population decline resulted in decreased gene flow from surrounding populations, low genetic diversity, and a putative reduction in adaptive potential, leaving populations vulnerable to future environmental and climatic changes. Previous studies using mitochondrial control region and nuclear transcriptome-wide SNP data detected introgressive hybridization in multiple northern B. bombina populations after unreported release of toads from Austria. Here, we determine the impact of this introgression by comparing the body conditions (proxy for fitness) of introgressed and nonintrogressed populations and the genetic consequences in two candidate genes for putative local adaptation (the MHC II gene as part of the adaptive immune system and the stress response gene HSP70 kDa). We detected regional differences in body condition and observed significantly elevated levels of within individual MHC allele counts in introgressed Swedish populations, associated with a tendency toward higher body weight, relative to regional nonintrogressed populations. These differences were not observed among introgressed and nonintrogressed German populations. Genetic diversity in both MHC and HSP was generally lower in northern than Austrian populations. Our study sheds light on the potential benefits of translocations of more distantly related conspecifics as a means to increase adaptive genetic variability and fitness of genetically depauperate range margin populations without distortion of local adaptation.

2.
Dis Aquat Organ ; 140: 209-218, 2020 Sep 03.
Article in English | MEDLINE | ID: mdl-32880378

ABSTRACT

The chytrid fungus Batrachochytrium dendrobatidis (Bd) has caused worldwide declines in amphibian populations. While Bd is widespread in southern and central Europe, its occurrence and distribution in northernmost Europe is mostly unknown. We surveyed for Bd in breeding anurans in Sweden by sampling 1917 amphibians from 101 localities and 3 regions in Sweden (southern, northern and central). We found that Bd was widespread in southern and central Sweden, occurring in all 9 investigated species and in 45.5% of the 101 localities with an overall prevalence of 13.8%. No infected individuals were found in the 4 northern sites sampled. The records from central Sweden represent the northernmost records of Bd in Europe. While the proportion of sites positive for Bd was similar between the southern and central regions, prevalence was much higher in the southern region. This was because southern species with a distribution mainly restricted to southernmost Sweden had a higher prevalence than widespread generalist species. The nationally red-listed green toad Bufotes variabilis and the fire-bellied toad Bombina bombina had the highest prevalence (61.4 and 48.9%, respectively). Across species, Bd prevalence was strongly positively, correlated with water temperature at the start of egg laying. However, no individuals showing visual signs of chytridiomycosis were found in the field. These results indicate that Bd is widespread and common in southern and central Sweden with southern species, breeding in higher temperatures and with longer breeding periods, having higher prevalence. However, the impact of Bd on amphibian populations in northernmost Europe remains unknown.


Subject(s)
Chytridiomycota , Mycoses/veterinary , Amphibians , Animals , Europe , Prevalence , Sweden
3.
Dis Aquat Organ ; 112(3): 219-28, 2015 Jan 15.
Article in English | MEDLINE | ID: mdl-25590772

ABSTRACT

We describe a novel syndrome in crayfish, eroded swimmeret syndrome (ESS), affecting wild female signal crayfish Pacifastacus leniusculus. ESS causes partial or total swimmeret erosion. We observed ESS only in female signal crayfish larger than 40 mm carapace length, i.e. sexually mature and probably having carried eggs at least once. The eroded swimmerets were melanised, indicating a crayfish immune system response. We isolated Fusarium tricinctum species complex (SC), F. sambucinum SC, Saprolegnia parasitica and S. australis from the melanised tissue of the eroded swimmerets. ESS includes chronic Aphanomyces astaci infection and a secondary infection by Fusarium sp. In Sweden, we found female signal crayfish with ESS in 6 out of 11 populations with a prevalence below 1% in lakes with commercially productive signal crayfish populations and higher than 29% in lakes with documented signal crayfish population crashes. In Finland, the ESS prevalence was from 3.4 to 6.2% in a commercially productive population. None of the sampled male signal crayfish showed signs of ESS. A caging experiment indicated that females with at least 1 lost swimmeret carried on average 25% fewer fertilized eggs compared to females with intact swimmerets. ESS could significantly reduce individual female fecundity and thus could also affect fecundity at the population level. The decline in reproductive success due to ESS could be among the factors contributing to fluctuations in wild signal crayfish populations.


Subject(s)
Aphanomyces/physiology , Astacoidea/microbiology , Fusarium/physiology , Animals , Aquaculture , Extremities/microbiology , Extremities/pathology , Female , Finland , Sweden
4.
Ecology ; 87(8): 1953-9, 2006 Aug.
Article in English | MEDLINE | ID: mdl-16937633

ABSTRACT

Optimality theory rests on the assumptions that short-term foraging decisions are driven by variation in environmental quality, and that these decisions have important implications for long-term fitness. These assumptions, however, are rarely tested in a field setting. We linked behavioral foraging decisions in food patches with measures of environmental quality covering larger spatial (resource density) or temporal (growth parameters) scales. In 10 lakes, we measured the food density at which benthic fish give up foraging in experimental food patches (giving-up density, GUD), quantified the biomass of benthic invertebrates, and calculated the maximum individual size (L(infinity)) of bream (Abramis brama L.), a typical benthivore in these lakes. We found positive relationships between resource density and both GUD and L(infinity), and a positive relationship between L(infinity) and GUD. Prey characterized as vulnerable to predation contributed most to the relationships between resource density and either GUD or L(infinity). A path analysis showed that resource density and L(infinity) directly explained 54% and 28%, respectively, of the variation in GUD, whereas 86% of the variation in L(infinity) was explained by resource density, with mostly indirect contribution from GUD. We conclude that the short-term foraging behavior of benthivores matched our expectations based on optimality theory by being positively linked to variables on environmental quality operating at both a larger spatial scale and a longer temporal scale.


Subject(s)
Cyprinidae/physiology , Feeding Behavior , Predatory Behavior , Animals , Ecosystem , Fresh Water , Invertebrates , Population Density , Spatial Behavior , Sweden
5.
Behav Processes ; 70(1): 41-50, 2005 Aug 31.
Article in English | MEDLINE | ID: mdl-15908140

ABSTRACT

Animals foraging in heterogeneous environments benefit from information on local resource density because it allows allocation of foraging effort to rich patches. In foraging groups, this information may be obtained by individuals through sampling or by observing the foraging behaviour of group members. We studied the foraging behaviour of goldfish (Carassius auratus) groups feeding in pools on resources distributed in patches. First, we determined if goldfish use sampling information to distinguish between patches of different qualities, and if this allowed goldfish to benefit from a heterogeneous resource distribution. Then, we tested if group size affected the time dedicated to food searching and ultimately foraging success. The decision of goldfish to leave a patch was affected by whether or not they found food, indicating that goldfish use an assessment rule. Giving-up density was higher when resources were highly heterogeneous, but overall gain was not affected by resource distribution. We did not observe any foraging benefits of larger groups, which indicate that grouping behaviour was driven by risk dilution. In larger groups the proportion searching for food was lower, which suggests interactions among group members. We conclude that competition between group members affects individual investments in food searching by introducing the possibility for alternative strategies, such as scrounging or resource monopolisation.


Subject(s)
Feeding Behavior , Spatial Behavior , Animals , Goldfish
SELECTION OF CITATIONS
SEARCH DETAIL
...