Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Nutr Metab (Lond) ; 14: 4, 2017.
Article in English | MEDLINE | ID: mdl-28096887

ABSTRACT

BACKGROUND: Dietary thylakoids derived from spinach have beneficial effects on body fat accumulation and blood lipids as demonstrated in humans and rodents. Important mechanisms established include delayed fat digestion in the intestine, without causing steatorrhea, and increased fatty acid oxidation in intestinal cells. The objective of our study was to elucidate if increased fecal fat excretion is an important mechanism to normalize adipose tissue metabolism during high-fat feeding in mice supplemented with thylakoids. METHODS: Mice were randomized to receive HFD or thylHFD for 14 days (n = 14 for the control group and 16 for the thylakoid group). The effect of thylakoids on body fat distribution, faecal and liver fat content, and adipose tissue metabolism was investigated following high-fat feeding. RESULTS: Thylakoid supplementation for 14 days caused an increased faecal fat content without compensatory eating compared to control. As a result, thylakoid treated animals had reduced fat mass depots and reduced liver fat accumulation compared to control. The size distribution of adipocytes isolated from visceral adipose tissue was narrowed and the cell size decreased. Adipocytes isolated from thylakoid-treated mice displayed a significantly increased lipogenesis, and protein expression of peroxisome proliferator-activated receptor gamma (PPARγ), down-stream target FAS, as well as transcription factor coactivators PGC1-α and LPIN-1 were upregulated in adipose tissue from thylakoid-fed mice. CONCLUSIONS: Together, these data suggest that thylakoid supplementation reduces body fat and fat cell size by binding to dietary fat and increasing its fecal excretion, thus reducing dietary fat available for absorption.

2.
Nutr Metab (Lond) ; 13: 67, 2016.
Article in English | MEDLINE | ID: mdl-27777602

ABSTRACT

Green-plant thylakoids increase satiety by affecting appetite hormones such as ghrelin, cholecystokinin (CCK) and glucagon-like peptide-1 (GLP-1). The objective of this study was to investigate if thylakoids also affect gastrointestinal (GI) passage and microbial composition. To analyse the effects on GI passage, 16 rats were gavage-fed a control or thylakoid-supplemented high-fat diet (HFD) 30 min before receiving Evans blue. Another 16 rats were fed a control HFD or thylakoid HFD for two weeks prior to the intragastric challenge with Evans blue. The amount of Evans blue in the stomach and the distance of migration in the intestines after 30 min were used as a measurement of gastric emptying and intestinal transit. These were reduced by thylakoid supplementation in the acute study, and however not significantly also after the two-week diet study. The second aim of the study was to investigate if thylakoid-supplementation affects the gut microbiota and amount of faecal fat in healthy human volunteers (n = 34) receiving thylakoid or placebo treatments for three months. Microbiota was analysed using 16S rRNA gene sequencing and qPCR, and faecal fat was extracted by dichloromethane. The total bacteria, and specifically the Bacteriodes fragilis group, were increased by thylakoid treatment versus placebo, while thylakoids did not cause steatorrhea. Dietary supplementation with thylakoids thus affects satiety both via appetite hormones and GI fullness, and affects the microbial composition without causing GI adverse effects such as steatorrhea. This suggests thylakoids as a novel agent in prevention and treatment of obesity.

3.
Am J Physiol Regul Integr Comp Physiol ; 311(3): R618-27, 2016 09 01.
Article in English | MEDLINE | ID: mdl-27488889

ABSTRACT

Thylakoids reduce body weight gain and body fat accumulation in rodents. This study investigated whether an enhanced oxidation of dietary fat-derived fatty acids in the intestine contributes to the thylakoid effects. Male Sprague-Dawley rats were fed a high-fat diet with (n = 8) or without thylakoids (n = 8) for 2 wk. Body weight, food intake, and body fat were measured, and intestinal mucosa was collected and analyzed. Quantitative real-time PCR was used to measure gene expression levels of key enzymes involved in fatty acid transport, fatty acid oxidation, and ketogenesis. Another set of thylakoid-treated (n = 10) and control rats (n = 10) went through indirect calorimetry. In the first experiment, thylakoid-treated rats (n = 8) accumulated 25% less visceral fat than controls. Furthermore, fatty acid translocase (Fat/Cd36), carnitine palmitoyltransferase 1a (Cpt1a), and mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase 2 (Hmgcs2) genes were upregulated in the jejunum of the thylakoid-treated group. In the second experiment, thylakoid-treated rats (n = 10) gained 17.5% less weight compared with controls and their respiratory quotient was lower, 0.86 compared with 0.91. Thylakoid-intake resulted in decreased food intake and did not cause steatorrhea. These results suggest that thylakoids stimulated intestinal fatty acid oxidation and ketogenesis, resulting in an increased ability of the intestine to handle dietary fat. The increased fatty acid oxidation and the resulting reduction in food intake may contribute to the reduced fat accumulation in thylakoid-treated animals.


Subject(s)
Diet, High-Fat , Fatty Acids/metabolism , Intestinal Mucosa/metabolism , Intra-Abdominal Fat/physiology , Thylakoids/metabolism , Up-Regulation/physiology , Animals , Male , Organ Size/physiology , Oxidation-Reduction , Rats , Rats, Sprague-Dawley , Thylakoids/chemistry
6.
Appetite ; 91: 209-19, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25895695

ABSTRACT

Green-plant membranes, thylakoids, have previously been found to increase postprandial release of the satiety hormone GLP-1, implicated in reward signaling. The purpose of this study was to investigate how treatment with a single dose of thylakoids before breakfast affects homeostatic as well as hedonic hunger, measured as wanting and liking for palatable food (VAS). We also examined whether treatment effects were correlated to scores for eating behavior. Compared to placebo, intake of thylakoids significantly reduced hunger (21% reduction, p < 0.05), increased satiety (14% increase, p < 0.01), reduced cravings for all snacks and sweets during the day (36% reduction, p < 0.05), as well as cravings for salty (30%, p < 0.01); sweet (38%, p < 0.001); and sweet-and-fat (36%, p < 0.05) snacks, respectively, and decreased subjective liking for sweet (28% reduction, p < 0.01). The treatment effects on wanting all snacks, sweet-and-fat snacks in particular, were positively correlated to higher emotional eating scores (p < 0.01). The treatment effect of thylakoids on scores for wanting and liking were correlated to a reduced intake by treatment (p < 0.01 respectively), even though food intake was not affected significantly. In conclusion, thylakoids may be used as a food supplement to reduce homeostatic and hedonic hunger, associated with overeating and obesity. Individuals scoring higher for emotional eating behavior may have enhanced treatment effect on cravings for palatable food.


Subject(s)
Craving/drug effects , Food Preferences/drug effects , Hunger/drug effects , Obesity/diet therapy , Satiation/drug effects , Spinacia oleracea/chemistry , Thylakoids , Adult , Aged , Double-Blind Method , Eating , Emotions , Female , Humans , Middle Aged , Obesity/physiopathology , Obesity/psychology , Overweight , Phytotherapy , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Snacks , Taste
7.
Appetite ; 81: 295-304, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24993695

ABSTRACT

The frequency of obesity has risen dramatically in recent years but only few effective and safe drugs are available. We investigated if green-plant membranes, previously shown to reduce subjective hunger and promote satiety signals, could affect body weight when given long-term. 38 women (40-65 years of age, body mass index 25-33 kg/m(2)) were randomized to dietary supplementation with either green-plant membranes (5 g) or placebo, consumed once daily before breakfast for 12 weeks. All individuals were instructed to follow a three-meal paradigm without any snacking between the meals and to increase their physical activity. Body weight change was analysed every third week as was blood glucose and various lipid parameters. On days 1 and 90, following intake of a standardized breakfast, glucose, insulin and glucagon-like peptide 1 (GLP-1) in plasma were measured, as well as subjective ratings of hunger, satiety and urge for different palatable foods, using visual analogue scales. Subjects receiving green-plant membranes lost significantly more body weight than did those on placebo (p < 0.01). Mean weight loss with green-plant extract was 5.0 ± 2.3 kg compared to 3.5 ± 2.3 kg in the control group. Consumption of green-plant membranes also reduced total and LDL-cholesterol (p < 0.01 and p < 0.05 respectively) compared to control. Single-meal tests performed on day 1 and day 90 demonstrated an increased postprandial release of GLP-1 and decreased urge for sweet and chocolate on both occasions in individuals supplemented with green-plant membranes compared to control. Waist circumference, body fat and leptin decreased in both groups over the course of the study, however there were no differences between the groups. In conclusion, addition of green-plant membranes as a dietary supplement once daily induces weight loss, improves obesity-related risk-factors, and reduces the urge for palatable food. The mechanism may reside in the observed increased release of GLP-1.


Subject(s)
Dietary Supplements , Glucagon-Like Peptide 1/blood , Overweight/diet therapy , Weight Loss , Adult , Aged , Blood Glucose , Body Mass Index , Body Weight , Cholesterol, LDL/blood , Diet , Female , Humans , Insulin/blood , Leptin/blood , Meals , Middle Aged , Overweight/blood , Postprandial Period , Satiation , Single-Blind Method , Surveys and Questionnaires , Triglycerides/blood , Vegetables , Waist Circumference
8.
Appetite ; 68: 118-23, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23632035

ABSTRACT

Thylakoids are chlorophyll-containing membranes in chloroplasts that have been isolated from green leaves. It has been previously shown that thylakoids supplemented with a high-fat meal can affect cholecystokinin (CCK), ghrelin, insulin and blood lipids in humans, and can act to suppress food intake and prevent body weight gain in rodents. This study investigates the addition of thylakoids to a high carbohydrate meal and its effects upon hunger motivation and fullness, and the levels of glucose, insulin, CCK, ghrelin and tumour necrosis factor (TNF)-alpha in overweight women. Twenty moderately overweight female subjects received test meals on three different occasions; two thylakoid enriched and one control, separated by 1 week. The test meals consisted of a high carbohydrate Swedish breakfast, with or without addition of thylakoids. Blood samples and VAS-questionnaires were evaluated over a 4-h period. Addition of thylakoids suppressed hunger motivation and increased secretion of CCK from 180 min, and prevented postprandial hypoglycaemia from 90 min following food intake. These effects indicate that thylakoids may intensify signals of satiety. This study therefore suggests that the dietary addition of thylakoids could aid efforts to reduce food intake and prevent compensational eating later in the day, which may help to reduce body weight over time.


Subject(s)
Cholecystokinin/blood , Dietary Carbohydrates/administration & dosage , Hunger/drug effects , Hypoglycemia/prevention & control , Overweight/blood , Thylakoids , Adult , Aged , Blood Glucose/drug effects , Cholecystokinin/drug effects , Diet/methods , Dietary Carbohydrates/blood , Dietary Supplements , Female , Ghrelin/blood , Ghrelin/drug effects , Humans , Hunger/physiology , Hypoglycemia/blood , Hypoglycemia/complications , Insulin/blood , Middle Aged , Overweight/complications , Postprandial Period/drug effects , Postprandial Period/physiology , Satiation/drug effects , Satiation/physiology , Satiety Response/drug effects , Satiety Response/physiology , Single-Blind Method , Surveys and Questionnaires , Time Factors , Tumor Necrosis Factor-alpha/blood , Tumor Necrosis Factor-alpha/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...