Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Cytogenet Genome Res ; 156(1): 5-8, 2018.
Article in English | MEDLINE | ID: mdl-30286453

ABSTRACT

The aim of this study was to investigate the origin of the biallelic trisomic amplification pattern of the X chromosome microsatellite marker DXS1187 in an otherwise normal male fetus, identified on routine rapid aneuploidy detection (RAD) testing by quantitative fluorescent-polymerase chain reaction (QF-PCR). Amniocentesis was performed on a 35-year-old female at 15 weeks, 2 days gestation for a positive first trimester screen. QF-PCR, metaphase FISH, and chromosomal microarray were carried out on both maternal and fetal DNA. Fetal QF-PCR showed a biallelic trisomic pattern for the X chromosome microsatellite marker DXS1187, with an otherwise normal male amplification pattern at all other sex chromosome markers. Chromosome analysis performed on cultured amniocytes showed a normal male karyotype. Chromosome microarray analysis identified a maternally inherited 304-kb copy number triplication within chromosome Xq26.2 encompassing the DXS1187 marker. The maternally inherited X chromosome harbors an apparently tandem 304-kb triplication that overlaps the DXS1187 marker. As the triplicated region is devoid of clinically relevant genes, it was considered as likely benign in the fetus. Postnatal follow-up reported a healthy male newborn. To our knowledge, this is a unique case demonstrating a "benign" copy number imbalance involving the DXS1187 marker detected by prenatal QF-PCR RAD.

2.
Environ Microbiol ; 12(6): 1565-77, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20236162

ABSTRACT

Colony morphology variants isolated from natural and laboratory-grown biofilms represent subpopulations of biofilm cells that may be important for multiple aspects of the sessile lifestyle, from surface colonization to stress resistance. There are many genetic and environmental factors that determine the frequency at which colony morphology variants are recovered from biofilms. One of these factors involves an increased selection for variants in biofilms of Pseudomonas species bearing inactivating mutations in the global activator of cyanide biosynthesis/regulator of secondary metabolism (gac/rsm) signal transduction pathway. Here we characterize two distinct colony morphology variants isolated from biofilms of Pseudomonas fluorescens missing the gacS sensor kinase. These variants produced more biofilm cell mass, and in one case, this was likely due to overproduction of the exopolysaccharide cellulose. Nuclear magnetic resonance (NMR) metabolomics revealed distinct metabolic changes for each of the two phenotypic variants, and these changes involved amino acids and metabolites produced through glutathione biochemistry. Some of these metabolites are hypothesized to play a role in redox and metal homeostasis, and corresponding to this, we show that biofilm populations grown from each of these variants had a different ability to survive when exposed to toxic doses of metal ions. These data suggest that colony morphology variants that evolve during growth of P. fluorescens as a biofilm may have distinct metabolic capacities that contribute to their individual abilities to withstand environmental stress.


Subject(s)
Biofilms/growth & development , Metabolome , Pseudomonas fluorescens/cytology , Pseudomonas fluorescens/physiology , Least-Squares Analysis , Metals/toxicity , Mutation , Nuclear Magnetic Resonance, Biomolecular/methods , Phenotype , Pseudomonas fluorescens/drug effects , Pseudomonas fluorescens/genetics
3.
Environ Microbiol ; 10(1): 238-50, 2008 Jan.
Article in English | MEDLINE | ID: mdl-17894814

ABSTRACT

Growth in a biofilm modulates microbial metal susceptibility, sometimes increasing the ability of microorganisms to withstand toxic metal species by several orders of magnitude. In this study, a high-throughput metal toxicity screen was initiated with the aim of correlating biological toxicity data in planktonic and biofilm cells to the physiochemical properties of metal ions. To this end, Pseudomonas fluorescens ATCC 13525 was grown in the Calgary Biofilm Device (CBD) and biofilms and planktonic cells of this microorganism were exposed to gradient arrays of different metal ions. These arrays included 44 different metals with representative compounds that spanned every group of the periodic table (except for the halogens and noble gases). The minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC) and minimum biofilm eradication concentration (MBEC) values were obtained after exposing the biofilms to metal ions for 4 h. Using these values, metal ion toxicity was correlated to the following ion-specific physicochemical parameters: standard reduction-oxidation potential, electronegativity, the solubility product of the corresponding metal-sulfide complex, the Pearson softness index, electron density and the covalent index. When the ions were grouped according to outer shell electron structure, we found that heavy metal ions gave the strongest correlations to these parameters and were more toxic on average than the other classes of the ions. Correlations were different for biofilms than for planktonic cells, indicating that chemical mechanisms of metal ion toxicity differ between the two modes of growth. We suggest that biofilms can specifically counter the toxic effects of certain physicochemical parameters, which may contribute to the increased ability of biofilms to withstand metal toxicity.


Subject(s)
Biofilms/drug effects , Metals/toxicity , Pseudomonas fluorescens/drug effects , Pseudomonas fluorescens/physiology , Biofilms/growth & development , Metals, Heavy/toxicity , Microbial Sensitivity Tests , Pseudomonas fluorescens/chemistry , Pseudomonas fluorescens/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...