Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters










Publication year range
1.
Front Plant Sci ; 15: 1379970, 2024.
Article in English | MEDLINE | ID: mdl-38855473

ABSTRACT

Phytophthora cactorum is a plant pathogenic oomycete that causes crown rot in strawberry leading to significant economic losses every year. To invade the host, P. cactorum secretes an arsenal of effectors that can manipulate host physiology and impair its defense system promoting infection. A transcriptome analysis was conducted on a susceptible wild strawberry genotype (Fragaria vesca) 48 hours post inoculation with P. cactorum to identify effectors expressed during the early infection stage. The analysis revealed 4,668 P. cactorum genes expressed during infection of F. vesca. A total of 539 secreted proteins encoded by transcripts were identified, including 120 carbohydrate-active enzymes, 40 RXLRs, 23 proteolytic enzymes, nine elicitins, seven cysteine rich proteins, seven necrosis inducing proteins and 216 hypothetical proteins with unknown function. Twenty of the 40 RXLR effector candidates were transiently expressed in Nicotiana benthamiana using agroinfiltration and five previously unreported RXLR effector genes (Pc741, Pc8318, Pc10890, Pc20813, and Pc22290) triggered cell death when transiently expressed. The identified cell death inducing RXLR effectors showed 31-66% identity to known RXLR effectors in different Phytophthora species having roles in pathogenicity including both activation and suppression of defense response in the host. Furthermore, homology analysis revealed that these cell death inducing RXLR effectors were highly conserved (82 - 100% identity) across 23 different strains of P. cactorum originating from apple or strawberry.

2.
Annu Rev Phytopathol ; 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38876113

ABSTRACT

Ultraviolet (UV) irradiation below 300 nm may control powdery mildew in numerous crops. Depending on disease pressure, wavelength, and crop growth stage, one to three applications of 100-200 J/m2 per week at night are as effective or better than the best fungicides. Higher doses may harm the plants and reduce yields. Although red light alone or in combination with UV has a suppressive effect on powdery mildew, concomitant or subsequent exposure to blue light or UV-A strongly reduces the efficacy of UV treatments. To be effective, direct exposure of the pathogen/infection sites to UV/red light is important, but there are clear indications for the involvement of induced resistance in the host. Other pathogens and pests are susceptible to UV, but the effective dose may be phytotoxic. Although there are certain limitations, this technology is gradually becoming more used in both protected and open-field commercial production systems.

3.
Plant Dis ; 108(1): 139-148, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37578357

ABSTRACT

Gray mold, caused by Botrytis spp., is a serious problem in Norway spruce seedling production in forest nurseries. From 2013 to 2019, 125 isolates of Botrytis were obtained from eight forest nurseries in Norway: 53 from Norway spruce seedlings, 16 from indoor air, 52 from indoor surfaces, and four from weeds growing close to seedlings. The majority of isolates were identified as B. cinerea, and over 60% of these were characterized as Botrytis group S. B. pseudocinerea isolates were obtained along with isolates with DNA sequence similarities to B. prunorum. Fungicide resistance was assessed with a mycelial growth assay, and resistance was found for the following: boscalid (8.8%), fenhexamid (33.6%), fludioxonil (17.6%), pyraclostrobin (36.0%), pyrimethanil (13.6%), and thiophanate-methyl (50.4%). Many isolates (38.4%) were resistant to two to six different fungicides. A selection of isolates was analyzed for the presence of known resistance-conferring mutations in the cytb, erg27, mrr1, sdhB, and tubA genes, and mutations leading to G143A, F412S, ΔL497, H272R, and E198A/F200Y were detected, respectively. Detection of fungicide resistance in Botrytis from Norway spruce and forest nursery facilities reinforces the necessity of employing resistance management strategies to improve control and delay development of fungicide resistance in the gray mold pathogens.[Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Subject(s)
Fungicides, Industrial , Fungicides, Industrial/pharmacology , Drug Resistance, Fungal/genetics , Botrytis , Plant Diseases/prevention & control , Mutation
4.
Plant Dis ; 2023 Nov 30.
Article in English | MEDLINE | ID: mdl-38035780

ABSTRACT

Trials were carried out in apple orchards of Emilia-Romagna and Trentino-Alto Adige in northern Italy to investigate the effects of sprinkler irrigation on possible reduction in inoculum and subsequent disease pressure of Venturia inaequalis, the ascomycete causing apple scab. In spring, volumetric spore traps were placed above apple leaf litter containing pseudothecia with ascospores of the fungus. Pseudothecia matured more rapidly in irrigated plots, and 95% of the total number of spores trapped in a season was reached on average 164 degree days (base temperature 0°C) earlier in irrigated compared to non-irrigated plots. On average for seven location/year combinations, more than 50% of the ascospores were trapped following irrigations carried out for two hours on sunny days before a forecasted rainfall. Subsequently, a much lower number of spores were trapped on rainy days following irrigation. Field trials with scab susceptible apple cultivars were carried out in the two regions to evaluate the efficacy of sprinkler irrigation on disease. Irrigated and non-irrigated plots were either treated with different fungicide control strategies or not treated. Irrigation significantly reduced the incidence of apple scab at both sites, and the overall number of infected leaves and fruit was reduced by more than 50%. Mid-day sprinkler irrigation can significantly reduce the inoculum pressure of V. inaequalis in apple orchards. This may be a sustainable management strategy, especially in areas with extended dry periods.

5.
Int J Mol Sci ; 24(13)2023 Jun 29.
Article in English | MEDLINE | ID: mdl-37446029

ABSTRACT

Crown rot, caused by Phytophthora cactorum, is a devastating disease of strawberry. While most commercial octoploid strawberry cultivars (Fragaria × ananassa Duch) are generally susceptible, the diploid species Fragaria vesca is a potential source of resistance genes to P. cactorum. We previously reported several F. vesca genotypes with varying degrees of resistance to P. cactorum. To gain insights into the strawberry defence mechanisms, comparative transcriptome profiles of two resistant genotypes (NCGR1603 and Bukammen) and a susceptible genotype (NCGR1218) of F. vesca were analysed by RNA-Seq after wounding and subsequent inoculation with P. cactorum. Differential gene expression analysis identified several defence-related genes that are highly expressed in the resistant genotypes relative to the susceptible genotype in response to P. cactorum after wounding. These included putative disease resistance (R) genes encoding receptor-like proteins, receptor-like kinases, nucleotide-binding sites, leucine-rich repeat proteins, RPW8-type disease resistance proteins, and 'pathogenesis-related protein 1'. Seven of these R-genes were expressed only in the resistant genotypes and not in the susceptible genotype, and these appeared to be present only in the genomes of the resistant genotypes, as confirmed by PCR analysis. We previously reported a single major gene locus RPc-1 (Resistance to Phytophthora cactorum 1) in F. vesca that contributed resistance to P. cactorum. Here, we report that 4-5% of the genes (35-38 of ca 800 genes) in the RPc-1 locus are differentially expressed in the resistant genotypes compared to the susceptible genotype after inoculation with P. cactorum. In particular, we identified three defence-related genes encoding wall-associated receptor-like kinase 3, receptor-like protein 12, and non-specific lipid-transfer protein 1-like that were highly expressed in the resistant genotypes compared to the susceptible one. The present study reports several novel candidate disease resistance genes that warrant further investigation for their role in plant defence against P. cactorum.


Subject(s)
Fragaria , Phytophthora , Transcriptome , Fragaria/genetics , Phytophthora/genetics , Disease Resistance/genetics , Gene Expression Profiling
6.
Front Microbiol ; 14: 1214924, 2023.
Article in English | MEDLINE | ID: mdl-37465018

ABSTRACT

Phytophthora cactorum has two distinct pathotypes that cause crown rot and leather rot in strawberry (Fragaria × ananassa). Strains of the crown rot pathotype can infect both the rhizome (crown) and fruit tissues, while strains of the leather rot pathotype can only infect the fruits of strawberry. The genome of a highly virulent crown rot strain, a low virulent crown rot strain, and three leather rot strains were sequenced using PacBio high fidelity (HiFi) long read sequencing. The reads were de novo assembled to 66.4-67.6 megabases genomes in 178-204 contigs, with N50 values ranging from 892 to 1,036 kilobases. The total number of predicted complete genes in the five P. cactorum genomes ranged from 17,286 to 17,398. Orthology analysis identified a core secretome of 8,238 genes. Comparative genomic analysis revealed differences in the composition of potential virulence effectors, such as putative RxLR and Crinklers, between the crown rot and the leather rot pathotypes. Insertions, deletions, and amino acid substitutions were detected in genes encoding putative elicitors such as beta elicitin and cellulose-binding domain proteins from the leather rot strains compared to the highly virulent crown rot strain, suggesting a potential mechanism for the crown rot strain to escape host recognition during compatible interaction with strawberry. The results presented here highlight several effectors that may facilitate the tissue-specific colonization of P. cactorum in strawberry.

7.
Plant Dis ; 107(10): 2949-2961, 2023 Oct.
Article in English | MEDLINE | ID: mdl-36825311

ABSTRACT

The efficacy of currently available fungicides against apple scab, caused by the fungal pathogen Venturia inaequalis, was investigated in relation to when growers spray (ahead, during, or after rain) and how the spray reaches the target. The adaxial surface of individual leaves of potted trees were sprayed and then inoculated with ascospores of V. inaequalis, to establish dose-response curves for each fungicide. Discriminatory doses providing 50 and 90% symptom inhibition (EC50 and EC90, respectively) in sprays mimicking applications ahead of rain were used for experiments imitating alternative spray timings. Sprays were either applied during the spore germination phase or early or late after infection onset (either 336 or 672 degree-hours after inoculation, respectively), corresponding to grower spray schedules. Experiments were also carried out with sprays applied on the abaxial leaf surface to investigate fungicide efficacy through the leaf lamina. For all fungicides, the best efficacy was observed when sprays were applied during germination, followed by applications ahead of inoculation. Some products maintained equal or better efficacy at early infection, while efficacy in late infection dropped for all products, clearly indicating that this spray timing should be avoided. Some products with postinfection efficacy also showed translaminar efficacy. The close relationship found between EC50 of the active ingredients on potted trees and the label rate could help improve spraying decisions and reduce costs.


Subject(s)
Ascomycota , Fungicides, Industrial , Malus , Fungicides, Industrial/pharmacology , Malus/microbiology , Ascomycota/physiology , Plant Diseases/prevention & control , Plant Leaves
8.
Exp Appl Acarol ; 88(3-4): 243-262, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36326982

ABSTRACT

In this study, we investigated if a steam treatment program used to produce disease-free strawberry transplants has the potential to also eliminate strawberry mite (Phytonemus pallidus) and two-spotted spider mite (Tetranychus urticae). Crowns of strawberry plants collected in a commercial field, containing young, folded leaves with all life stages of P. pallidus, and strawberry leaf discs on water agar with T. urticae with non-diapausing adult females and eggs from a laboratory rearing, were exposed to warm aerated steam in a steam cabinet in a series of four experimental runs over 2 years. The steam treatments constituted of a 1-h pre-treatment with 37 °C steam followed by a 1-h recovery period at 21-25 °C, and then a main steam treatment at 44 °C for either 2, 4 (both P. pallidus and T. urticae) or 6 h (the more heat tolerant T. urticae only). After steaming, the plant material with P. pallidus or T. urticae were incubated at 21-25 °C until survival was assessed after 1-6 days, depending on the mite species and life-stage. Non-steamed plant material with mites was used as controls. The 4-h treatment killed all P. pallidus eggs, larvae and adults, and the 2-h treatment killed all individuals in all three stages except for one egg in one of the runs. There were no or minor effects of the steam treatments on T. urticae adult and egg survival. Based on these results, the tested steam treatments may be used to eliminate the strawberry mite but not the two-spotted spider mite from strawberry planting material.


Subject(s)
Fragaria , Tetranychidae , Animals , Steam
9.
Plant Dis ; 106(9): 2455-2461, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35224988

ABSTRACT

Strawberry powdery mildew, caused by Podosphaera aphanis, can be particularly destructive in glasshouse and plastic tunnel production systems, which generally are constructed of materials that block ultraviolet (UV) solar radiation (about 280 to 400 nm). We compared epidemic progress in replicated plots in open fields and under tunnels constructed of polyethylene, which blocks nearly all solar UV-B, and two formulations of ethylene tetrafluoroethylene (ETFE), one of which contained a UV blocker and another that transmitted nearly 90% of solar UV-B. Disease severity under all plastics was higher than in open-field plots, indicating a generally more favorable environment in containment structures. However, the foliar severity of powdery mildew within the tunnels was inversely related to their UV transmissibility. Among the tunnels tested, incidence of fruit infection was highest under polyethylene and lowest under UV-transmitting ETFE. These effects probably transcend crop, and the blocking of solar UV transmission by glass and certain plastics probably contributes to the widely observed favorability of greenhouse and high-tunnel growing systems for powdery mildew.


Subject(s)
Fragaria , Fruit , Plastics , Polyethylenes
10.
Plant Dis ; 105(9): 2402-2409, 2021 Sep.
Article in English | MEDLINE | ID: mdl-33616425

ABSTRACT

We designed and deployed an apparatus to apply UV light for suppression of powdery mildew in open field production of strawberry. The unit was evaluated in a commercial production field for one season, and for two additional seasons in open field research plots at the University of Florida Gulf Coast Research and Education Center. The apparatus contained two 180-cm-long hemicylindrical arrays of twenty 55-W low-pressure discharge UV-C lamps (operated at 30 W; peak wavelength = 254 nm) backed by polished aluminum reflectors covering two adjacent beds of the strawberry planting. The lamp arrays were suspended within a steel carriage that was tractor-drawn through the planting at 2.3, 4.6, and 5.6 km h-1. Nighttime applications of UV-C at doses ranging from 65 to 170 J⋅m-2 either once or twice weekly provided suppression of foliar and fruit disease that was consistently equal to or better than that provided by a commercial calendar-based fungicide spray program.


Subject(s)
Ascomycota , Fragaria , Fruit , Plant Diseases , Plant Leaves , Ultraviolet Rays
11.
Plant Dis ; 105(1): 71-77, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33175654

ABSTRACT

Powdery mildew (Podosphaera aphanis) is a destructive and widespread disease of strawberry (Fragaria × ananassa), especially when susceptible cultivars are grown in high plastic tunnels or glasshouses. Many powdery mildews thrive in humid environments but free water films on plant surfaces can inhibit conidial germination of some species. We hypothesized that P. aphanis might be directly suppressed by rain through the action of water films and meteoric water. In repeated experiments, the hydrophobic conidia of P. aphanis collected on the surface of water droplets, resulting in their removal when the droplets rolled over the leaf surfaces and fell to the ground. Meteoric water and water films also damaged conidiophores. Brief midday water mists applied in pulses lasting 1 min each four times per day were as effective as multiple fungicide treatments in suppressing powdery mildew. Rapid drying of the pulsed mists resulted in effective suppression of powdery mildew without consequent increases of fungal pathogens that might benefit from water films. The timing and duration of water sprinkling has been refined to the point where it can provide a commercially relevant degree of suppression of powdery mildew on strawberry in a high-tunnel production system.


Subject(s)
Ascomycota , Fragaria , Plant Diseases , Water
12.
Plant Dis ; 104(11): 2973-2978, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32902357

ABSTRACT

In a number of pathosystems involving the powdery mildews (Erysiphales), plant stress is associated with decreased disease susceptibility and is detrimental to pathogen growth and reproduction. However, in strawberry, anecdotal observations associate severe powdery mildew (Podosphaera aphanis) with water stress. In a 2017 survey of 42 strawberry growers in Norway and California, 40 growers agreed with a statement that water-stressed strawberry plants were more susceptible to powdery mildew compared with nonstressed plants. In repeated in vitro and in vivo experiments, we found that water stress was consistently and significantly unfavorable to conidial germination, infection, and increases in disease severity. Deleterious effects on the pathogen were observed from both preinoculation and postinoculation water stress in the host. Soil moisture content in the range from 0 to 50% was correlated (R2 = 0.897) with germinability of conidia harvested from extant colonies that developed on plants growing at different levels of water stress. These studies confirm that P. aphanis fits the norm for biotrophic powdery mildews and hosts under stress. Mild water stress, compared with a state of optimal hydration, is likely to decrease rather than increase susceptibility of strawberry to P. aphanis. We believe it is possible that foliar symptoms of leaf curling due to diffuse and inconspicuous infection of the lower leaf surfaces by P. aphanis could easily be mistakenly attributed to water stress, which we observed as having a nearly identical leaf curling symptom in strawberry.


Subject(s)
Ascomycota , Fragaria , Dehydration , Humans , Plant Diseases , Plant Leaves
13.
Front Microbiol ; 11: 1091, 2020.
Article in English | MEDLINE | ID: mdl-32547521

ABSTRACT

Powdery mildews can be controlled by brief exposure to ultraviolet (UV) radiation with devastating effect on their developmental stages including conidia germination. The treatment effect can be impaired by subsequent exposure to UV-A/blue light. UV-A/blue light-activated photolyase may be responsible for this and therefore we tested the function of three cryptochrome/photolyase family (CPF)-like genes (OINE01015670_T110144, OINE01000912_T103440, and OINE01005061_T102555) identified in the obligate biotrophic fungus Pseudoidium neolycopersici, the cause of tomato powdery mildew. A photolyase-deficient mutant of Escherichia coli transformed with coding sequence of OINE01000912_T103440 and exposed to brief (UV)-C treatment (peak emission at 254 nm) showed photoreactivation and cell survival when exposed to subsequent blue light, indicating complementation of photolyase activity. In contrast, the same photolyase-deficient E. coli transformed with the coding sequences of other two CPF-like genes did not survive this treatment, even though their expression were confirmed at protein level. This confirmed that OINE01000912_T103440 is a gene encoding photolyase, here named PnPHR1, with functionality similar to the native photolyase in E. coli, and classified as a class I cyclobutane pyrimidine dimer (CPD) photolyase. Modeling of the 634-amino acid sequence of PnPHR1 suggested that it is capable of binding flavin adenine dinucleotide (FAD) and methenyltetrahydrofolate (MTHF). However, spectroscopic data of the protein produced in an E. coli expression system could only reveal the presence of a reduced form of FAD, i.e., FADH- as an intrinsic chromophore. Within the tested wavelength range of 365-525 nm, the survival of photolyase-deficient mutant E. coli transformed with PnPHR1 showed a broad action spectrum from 365 to 454 nm. This was very similar to the previously characterized action spectrum for survival of P. neolycopersici conidia that had been treated with UV-C. Quantitative RT-PCR revealed that the expression of PnPHR1 in P. neolycopersici conidia was induced by UV-C, and peak expression occurred 4 h after brief UV-C treatment. The expression of PnPHR1 was repressed when incubated in red light after the UV-C treatment, but not when incubated in UV-A/blue light. The results may explain why the disease-reducing effect of short wavelength UV is impaired by exposure to UV-A and blue light.

14.
Plant Dis ; 104(2): 465-473, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31821100

ABSTRACT

In many areas where spring is wet, fungicides are applied in relation to rain events that trigger ejection of ascospores of Venturia inaequalis, which cause primary infections of apple scab. Past studies established the rate of ejection during rain in relation to light and temperature, and determined the wetting time required for infection. Simulation software uses this information to calculate risk and help time sprays accordingly. However, the distribution of the infection time required by a population of spores landed on leaves was never studied, and assumptions were used. To estimate this, we inoculated ascospores of V. inaequalis on potted trees at different temperatures for specific wetting times. Lesions were enumerated after incubation. Lesions increased with wetness time and leveled off once the slowest spores infected the host, closely matching the monomolecular model. Wetness hours were best adjusted for temperature using the Yin equation. The minimum infection time on the youngest leaves was about 5 h, matching results from previous studies, whereas half the lesions appeared after 7 h of infection. Infection times for leaves with ontogenic resistance were longer. Our results improve current software estimates and may improve spraying decisions.


Subject(s)
Ascomycota , Fungicides, Industrial , Malus , Plant Diseases , Spores, Fungal
15.
J Photochem Photobiol B ; 175: 141-148, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28886570

ABSTRACT

Nighttime ultraviolet (UV) radiation, if applied properly, has a significant potential for management of powdery mildews in many crop species. In this study, the role of growth light duration, irradiance, a combination of both (daily light integral) and light spectral quality (blue or red) on the efficacy of UV treatments against powdery mildew caused by Podosphaera xanthii and the growth performance of cucumber plants was studied in growth chambers. Increasing daily light integral provided by high-pressure sodium lamps (HPS) decreased efficacy of nighttime UV treatments against P. xanthii, but it increased plant growth. Furthermore, the efficacy of nighttime UV decreased when day length was increased from 16 to 20h at a constant daily light integral. The efficacy of nighttime UV increased if red light was applied after UV treatment, showing the possibility of day length extension without reducing the effect of UV. Increasing the dose of blue light during daytime reduced the efficacy of nighttime UV in controlling the disease, whereas blue deficient growth light (<6% of blue) caused UV mediated curling of young leaves. Furthermore, application of blue light after nighttime UV reduced its disease control efficacy. This showed the importance of maintaining a minimum of blue light in the growth light before nighttime UV treatment. Findings from this study showed that optimization of nighttime UV for management of powdery mildew is dependent on the spectral composition of the photosynthetically active radiation.


Subject(s)
Ascomycota/radiation effects , Cucumis sativus/microbiology , Light , Plant Diseases/microbiology , Plant Diseases/prevention & control , Ultraviolet Rays , Ascomycota/physiology , Chlorophyll/metabolism , Cucumis sativus/growth & development , Cucumis sativus/radiation effects , Plant Leaves/growth & development , Plant Leaves/microbiology , Plant Leaves/radiation effects
16.
Plant Dis ; 101(7): 1207-1213, 2017 Jul.
Article in English | MEDLINE | ID: mdl-30682962

ABSTRACT

Production of inoculum of Colletotrichum acutatum from both previously infected and overwintered tissue, as well as newly developed plant tissue of sour cherry (Prunus cerasus), was studied in southern Norway. Plant parts were sampled from commercial, private, or research orchards, and incubated for 2 to 14 days (time depended on tissue type) in saturated air at 20°C. In early spring, abundant sporulation was found on scales of overwintered buds and shoots. A mean of 35% infected buds in four cultivars was observed, with a maximum of 72% of the buds infected in one of the samples. Over 3 years, the seasonal production of overwintered fruit and peduncles of cv. Fanal infected the previous year was investigated. In all three years, the infected plant material was placed in the trees throughout the winter and the following growing season; in two of the years, fruit and peduncles were also placed on the ground in the autumn or the following spring. Old fruit and peduncles formed conidia throughout the season, with a peak in May and June. Spore numbers declined over the season, but the decline was more rapid for plant material on the ground than in the trees. On average over 2 years, 68.7, 24.0, or 7.3% of the inoculum came from fruit placed in the trees, placed on the ground in spring, or placed on the ground the preceding autumn, respectively. The number of fruit and peduncles attached to the trees in a planting of cv. Hardangerkirsebær was followed from February to July one year, and although there was a decline over time, fruit and/or their peduncles were still attached in substantial numbers in July, thus illustrating their potential as sources of inoculum. In observations over 2 years in a heavily infected orchard of cv. Stevnsbær, 75 and 47% of flowers and newly emerged fruit, respectively, were infected. Artificially inoculated flowers and fruit produced conidia until harvest, with a peak in mid-July. It may be concluded that previously infected and overwintered, as well as newly emerged tissue of sour cherry, may serve as sources of inoculum of C. acutatum throughout the growing season.

17.
J Photochem Photobiol B ; 156: 41-9, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26803275

ABSTRACT

Oidium neolycopersici, the cause of powdery mildew in tomato, was exposed to UV radiation from 250 to 400 nm for 1, 12, or 24 min. Radiation ≤ 280 nm strongly reduced conidial germination, hyphal expansion, penetration attempt and infection of O. neolycopersici. From 290 to 310 nm the effect depended on duration of exposure, while there was no effect ≥ 310 nm. There were no significant differences within the effective UV range (250-280 nm). Conidial germination on a water agar surface was <20% or around 40%, respectively, if samples were exposed for 1 min within the effective UV range followed by 24h or 48 h incubation. Twelve or 24 min exposure reduced germination to close to nil. A similar trend occurred for germination of conidia on leaf disks on water agar in Petri dishes. The effective UV range significantly reduced all subsequent developmental stages of O. neolycopersici. There was no cytoplasmic mitochondrial streaming in conidia exposed to the effective UV range, indicating that there may be a direct effect via cell cycle arrest. There was no indication of reactive oxygen species involvement in UV mediated inhibition of O. neolycopersici. Optical properties of O. neolycopersici indicated that the relative absorption of UV was high within the range of 250 to 320 nm, and very low within the range of 340 to 400 nm. Identification of UV wavelengths effective against O. neolycopersici provides a future basis for precise disease control.


Subject(s)
Ascomycota/pathogenicity , Spectrophotometry, Ultraviolet/methods , Ascomycota/chemistry , Cytoplasm/metabolism , Germination , Mitochondria/metabolism , Reactive Oxygen Species/metabolism
18.
Plant Dis ; 100(1): 72-78, 2016 Jan.
Article in English | MEDLINE | ID: mdl-30688584

ABSTRACT

The temporal distribution and magnitude of ontogenic resistance in strawberry leaves to Podosphaera aphanis has recently been quantified. However, the degree to which the pathogen is inhibited at sequential stages of conidial germination, hyphal growth, haustoria formation, latent period, colony expansion, and sporulation on the adaxial and abaxial leaf surfaces of various strawberry cultivars remains unclear. Five developmental stages of strawberry leaves ranging from newly emerged and folded leaves to fully expanded and dark-green leaves were inoculated with conidia of P. aphanis. The percentage of germinated conidia significantly declined between leaf stages 3 and 5. Postgermination growth of the pathogen was sequentially reduced in all measured responses, and the latent period was increased. Haustoria were not observed in mature leaves. The failure of the pathogen to penetrate mature leaves was a consistent feature associated with the expression of ontogenic resistance in older, fully expanded leaves.

19.
FEMS Microbiol Lett ; 362(16)2015 Aug.
Article in English | MEDLINE | ID: mdl-26296707

ABSTRACT

Herbaria collections containing plants with disease symptoms are highly valuable, and they are often the only way to investigate outbreaks and epidemics from the past as the number of viable isolates in culture collections is often limited. Species belonging to the Colletotrichum acutatum complex infect a range of important crops. As members of the C. acutatum complex are easily confused with other Colletotrichum species, molecular methods are central for the correct identification. We performed molecular analyses on 21 herbaria specimens, displaying anthracnose symptoms, collected in Norway and Denmark before the first confirmed findings of C. acutatum complex members in this region. Sequencing parts of the fungal ITS regions showed that members of the species complex were present in 13 of the 21 specimens collected in different parts of Norway and Denmark between 1948 and 1991, representing seven plant hosts (three cherry species, apple, raspberry and rhododendron). This is the first time herbarium specimens have been used to study these pathogens under Nordic conditions. Differences in the ITS sequences suggest the presence of different genotypes within the complex, indicating a well-established population.


Subject(s)
Colletotrichum/classification , Colletotrichum/genetics , Fruit/microbiology , Plant Diseases/microbiology , Plants/microbiology , Colletotrichum/isolation & purification , Colletotrichum/pathogenicity , DNA, Fungal/genetics , Denmark , Fagus/microbiology , Genome, Fungal , Genotype , Malus/microbiology , Norway , Polymerase Chain Reaction , Prunus/microbiology , Rhododendron/microbiology , Rubus/microbiology , Sequence Analysis, DNA , Sorbus/microbiology
20.
Phytopathology ; 104(9): 954-63, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24624951

ABSTRACT

Ontogenic or age-related resistance has been noted in many pathosystems but is less often quantified or expressed in a manner that allows the concept to be applied in disease management programs. Preliminary studies indicated that leaves and fruit of three strawberry cultivars rapidly acquired ontogenic resistance to the powdery mildew pathogen, Podosphaera aphanis. In the present study, we quantify the development of ontogenic resistance in controlled inoculations of 10 strawberry cultivars using diverse isolates of P. aphanis in New York and Florida, USA, and in Norway. We report the differential and organ-specific development of ontogenic resistance in the receptacle and externally borne strawberry achenes. We further report that rapid development of ontogenic resistance prior to unfolding of emergent leaves, rather than differential susceptibility of adaxial versus abaxial leaf surfaces, may explain the commonly observed predominance of powdery mildew on the lower leaf surfaces. Susceptibility of leaves and fruit declined exponentially with age. Receptacle tissue of berries inoculated at four phenological stages from bloom to ripe fruit became nearly immune to infection approximately 10 to 15 days after bloom, as fruit transitioned from the early green to the late green or early white stage of berry development, although the achenes remained susceptible for a longer period. Leaves also acquired ontogenic resistance early in their development, and they were highly resistant shortly after unfolding and before the upper surface was fully exposed. No significant difference was found in the susceptibility of the adaxial versus abaxial surfaces. The rapid acquisition of ontogenic resistance by leaves and fruit revealed a narrow window of susceptibility to which management programs might be advantageously adapted.


Subject(s)
Ascomycota/physiology , Disease Resistance , Fragaria/growth & development , Fragaria/immunology , Plant Diseases/immunology , Flowers/growth & development , Flowers/immunology , Flowers/microbiology , Fragaria/anatomy & histology , Fragaria/microbiology , Fruit/anatomy & histology , Fruit/growth & development , Fruit/immunology , Fruit/microbiology , Host-Pathogen Interactions , Norway , Plant Diseases/microbiology , Plant Leaves/anatomy & histology , Plant Leaves/growth & development , Plant Leaves/immunology , Plant Leaves/microbiology , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...