Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
2.
PLoS One ; 16(7): e0253178, 2021.
Article in English | MEDLINE | ID: mdl-34232958

ABSTRACT

Bladder cancer, one of the most prevalent malignancies worldwide, remains hard to classify due to a staggering molecular complexity. Despite a plethora of diagnostic tools and therapies, it is hard to outline the key steps leading up to the transition from high-risk non-muscle-invasive bladder cancer (NMIBC) to muscle-invasive bladder cancer (MIBC). Carcinogen-induced murine models can recapitulate urothelial carcinogenesis and natural anti-tumor immunity. Herein, we have developed and profiled a novel model of progressive NMIBC based on 10 weeks of OH-BBN exposure in hepatocyte growth factor/cyclin dependent kinase 4 (R24C) (Hgf-Cdk4R24C) mice. The profiling of the model was performed by histology grading, single cell transcriptomic and proteomic analysis, while the derivation of a tumorigenic cell line was validated and used to assess in vivo anti-tumor effects in response to immunotherapy. Established NMIBC was present in females at 10 weeks post OH-BBN exposure while neoplasia was not as advanced in male mice, however all mice progressed to MIBC. Single cell RNA sequencing analysis revealed an intratumoral heterogeneity also described in the human disease trajectory. Moreover, although immune activation biomarkers were elevated in urine during carcinogen exposure, anti-programmed cell death protein 1 (anti-PD1) monotherapy did not prevent tumor progression. Furthermore, anti-PD1 immunotherapy did not control the growth of subcutaneous tumors formed by the newly derived urothelial cancer cell line. However, treatment with CpG-oligodeoxynucleotides (ODN) significantly decreased tumor volume, but only in females. In conclusion, the molecular map of this novel preclinical model of bladder cancer provides an opportunity to further investigate pharmacological therapies ahead with regards to both targeted drugs and immunotherapies to improve the strategies of how we should tackle the heterogeneous tumor microenvironment in urothelial bladder cancer to improve responses rates in the clinic.


Subject(s)
Urinary Bladder Calculi/metabolism , Animals , Butylhydroxybutylnitrosamine/pharmacology , Carcinogens/pharmacology , Cell Line, Tumor , Disease Models, Animal , Female , Humans , Longitudinal Studies , Male , Mice , Mice, Inbred C57BL , Polymerase Chain Reaction , Proteinuria/urine , Proteomics/methods , Sequence Analysis, RNA , Single-Cell Analysis , Urinary Bladder/drug effects , Urinary Bladder/metabolism , Urinary Bladder/pathology , Urinary Bladder Calculi/chemically induced , Urinary Bladder Calculi/urine , Urothelium/drug effects , Urothelium/metabolism , Urothelium/pathology
3.
J Med Chem ; 62(23): 10676-10690, 2019 12 12.
Article in English | MEDLINE | ID: mdl-31715099

ABSTRACT

Cyclic dinucleotides are second messengers in the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway, which plays an important role in recognizing tumor cells and viral or bacterial infections. They bind to the STING adaptor protein and trigger expression of cytokines via TANK binding kinase 1 (TBK1)/interferon regulatory factor 3 (IRF3) and inhibitor of nuclear factor-κB (IκB) kinase (IKK)/nuclear factor-κB (NFκB) signaling cascades. In this work, we describe an enzymatic preparation of 2'-5',3'-5'-cyclic dinucleotides (2'3'CDNs) with use of cyclic GMP-AMP synthases (cGAS) from human, mouse, and chicken. We profile substrate specificity of these enzymes by employing a small library of nucleotide-5'-triphosphate (NTP) analogues and use them to prepare 33 2'3'CDNs. We also determine affinity of these CDNs to five different STING haplotypes in cell-based and biochemical assays and describe properties needed for their optimal activity toward all STING haplotypes. Next, we study their effect on cytokine and chemokine induction by human peripheral blood mononuclear cells (PBMCs) and evaluate their cytotoxic effect on monocytes. Additionally, we report X-ray crystal structures of two new CDNs bound to STING protein and discuss structure-activity relationship by using quantum and molecular mechanical (QM/MM) computational modeling.


Subject(s)
Membrane Proteins/metabolism , Nucleotides, Cyclic/chemical synthesis , Nucleotides, Cyclic/pharmacology , Biological Assay , Computer Simulation , Cytokines/metabolism , Gene Expression Regulation/drug effects , HEK293 Cells , Humans , Leukocytes, Mononuclear/drug effects , Membrane Proteins/chemistry , Protein Conformation , Structure-Activity Relationship
4.
Biomaterials ; 154: 275-290, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29149721

ABSTRACT

The exceptionally high cellular uptake of gold nanorods (GNRs) bearing cationic surfactants makes them a promising tool for biomedical applications. Given the known specific toxic and stress effects of some preparations of cationic nanoparticles, the purpose of this study was to evaluate, in an in vitro and in vivo in mouse, the potential harmful effects of GNRs coated with (16-mercaptohexadecyl)trimethylammonium bromide (MTABGNRs). Interestingly, even after cellular accumulation of high amounts of MTABGNRs sufficient for induction of photothermal effect, no genotoxicity (even after longer-term accumulation), induction of autophagy, destabilization of lysosomes (dominant organelles of their cellular destination), alterations of actin cytoskeleton, or in cell migration could be detected in vitro. In vivo, after intravenous administration, the majority of GNRs accumulated in mouse spleen followed by lungs and liver. Microscopic examination of the blood and spleen showed that GNRs interacted with white blood cells (mononuclear and polymorphonuclear leukocytes) and thrombocytes, and were delivered to the spleen red pulp mainly as GNR-thrombocyte complexes. Importantly, no acute toxic effects of MTABGNRs administered as 10 or 50 µg of gold per mice, as well as no pathological changes after their high accumulation in the spleen were observed, indicating good tolerance of MTABGNRs by living systems.


Subject(s)
Gold/metabolism , Nanotubes/chemistry , Quaternary Ammonium Compounds/metabolism , Sulfhydryl Compounds/metabolism , Actin Cytoskeleton/drug effects , Actin Cytoskeleton/metabolism , Animals , Autophagy/drug effects , Blood Platelets/drug effects , Blood Platelets/pathology , Blood Platelets/ultrastructure , Cell Line, Tumor , Cell Movement/drug effects , DNA Damage , Humans , Lysosomes/drug effects , Lysosomes/metabolism , Male , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/drug effects , Mice, Inbred C57BL , Mutagens/toxicity , Nanotubes/toxicity , Nanotubes/ultrastructure , Podocytes/drug effects , Podocytes/metabolism , Spleen/drug effects , Spleen/pathology , Tissue Distribution
5.
Oncoimmunology ; 6(12): e1362528, 2017.
Article in English | MEDLINE | ID: mdl-29209567

ABSTRACT

Dendritic cell (DC)-based vaccines pulsed with high hydrostatic pressure (HHP)-inactivated tumor cells have recently been shown to be a promising tool for prostate cancer chemoimmunotherapy. In this study, DC-based vaccines, both pulsed and unpulsed, were as effective as docetaxel (DTX) in reducing prostate tumors in the orthotopic transgenic adenocarcinoma of the mouse prostate (TRAMP) model. However, we did not observe any additive or synergic effects of chemoimmunotherapy on the tumor growth, while only the combination of DTX and pulsed dendritic cells resulted in significantly lower proliferation detected by Ki67 staining in histological samples. The DC-based vaccine pulsed with HHP-treated tumor cells was also combined with another type of cytostatic, cyclophosphamide, with similar results. In another clinically relevant setting, minimal residual tumor disease after surgery, administration of DC-based vaccines after the surgery of poorly immunogenic transplanted TRAMP-C2, as well as in immunogenic TC-1 tumors, reduced the growth of tumor recurrences. To identify the effector cell populations after DC vaccine application, mice were twice immunized with both pulsed and unpulsed DC vaccine, and the cytotoxicity of the spleen cells populations was tested. The effector cell subpopulations were defined as CD4+ and NK1.1+, which suggests rather unspecific therapeutic effects of the DC-based vaccines in our settings. Taken together, our data demonstrate that DC-based vaccines represent a rational tool for the treatment of human prostate cancer.

6.
Oncotarget ; 7(34): 54952-54964, 2016 Aug 23.
Article in English | MEDLINE | ID: mdl-27448982

ABSTRACT

Standard-of-care chemo- or radio-therapy can induce, besides tumor cell death, also tumor cell senescence. While senescence is considered to be a principal barrier against tumorigenesis, senescent cells can survive in the organism for protracted periods of time and they can promote tumor development. Based on this emerging concept, we hypothesized that elimination of such potentially cancer-promoting senescent cells could offer a therapeutic benefit. To assess this possibility, here we first show that tumor growth of proliferating mouse TC-1 HPV-16-associated cancer cells in syngeneic mice becomes accelerated by co-administration of TC-1 or TRAMP-C2 prostate cancer cells made senescent by pre-treatment with the anti-cancer drug docetaxel, or lethally irradiated. Phenotypic analyses of tumor-explanted cells indicated that the observed acceleration of tumor growth was attributable to a protumorigenic environment created by the co-injected senescent and proliferating cancer cells rather than to escape of the docetaxel-treated cells from senescence. Notably, accelerated tumor growth was effectively inhibited by cell immunotherapy using irradiated TC-1 cells engineered to produce interleukin IL-12. Collectively, our data document that immunotherapy, such as the IL-12 treatment, can provide an effective strategy for elimination of the detrimental effects caused by bystander senescent tumor cells in vivo.


Subject(s)
Cellular Senescence/drug effects , Immunotherapy, Adoptive/methods , Interleukin-12/pharmacology , Neoplasms, Experimental/therapy , Taxoids/pharmacology , Tumor Burden/drug effects , Animals , Antineoplastic Agents/pharmacology , Bystander Effect/drug effects , Cell Line, Tumor , Combined Modality Therapy , Cytokines/genetics , Cytokines/metabolism , Docetaxel , Interleukin-12/biosynthesis , Male , Mice, Inbred C57BL , Neoplasms, Experimental/genetics , Neoplasms, Experimental/metabolism , Time Factors
7.
Int J Oncol ; 48(3): 953-64, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26718011

ABSTRACT

High hydrostatic pressure (HHP) has been shown to induce immunogenic cell death of cancer cells, facilitating their uptake by dendritic cells (DC) and subsequent presentation of tumor antigens. In the present study, we demonstrated immunogenicity of the HHP-treated tumor cells in mice. HHP was able to induce immunogenic cell death of both TC-1 and TRAMP-C2 tumor cells, representing murine models for human papilloma virus-associated tumors and prostate cancer, respectively. HHP-treated cells induced stronger immune responses in mice immunized with these tumor cells, documented by higher spleen cell cytotoxicity and increased IFNγ production as compared to irradiated tumor cells, accompanied by suppression of tumor growth in vivo in the case of TC-1 tumors, but not TRAMP-C2 tumors. Furthermore, HHP-treated cells were used for DC-based vaccine antigen pulsing. DC co-cultured with HHP-treated tumor cells and matured by a TLR 9 agonist exhibited higher cell surface expression of maturation markers and production of IL-12 and other cytokines, as compared to the DC pulsed with irradiated tumor cells. Immunization with DC cell-based vaccines pulsed with HHP-treated tumor cells induced high immune responses, detected by increased spleen cell cytotoxicity and elevated IFNγ production. The DC-based vaccine pulsed with HHP-treated tumor cells combined with docetaxel chemotherapy significantly inhibited growth of both TC-1 and TRAMP-C2 tumors. Our results indicate that DC-based vaccines pulsed with HHP-inactivated tumor cells can be a suitable tool for chemoimmunotherapy, particularly with regard to the findings that poorly immunogenic TRAMP-C2 tumors were susceptible to this treatment modality.


Subject(s)
Antineoplastic Agents/administration & dosage , Dendritic Cells/cytology , Neoplasms, Experimental/therapy , Papillomavirus Infections/therapy , Prostatic Neoplasms/therapy , Taxoids/administration & dosage , Animals , Antigens, Neoplasm/metabolism , Cancer Vaccines/chemistry , Cell Line, Tumor , Cytotoxicity, Immunologic , Docetaxel , Humans , Hydrostatic Pressure , Immune System , Immunotherapy/methods , Interferon-gamma/metabolism , Interleukin-12/metabolism , Male , Mice , Mice, Inbred C57BL , Neoplasms, Experimental/drug therapy , Papillomavirus Infections/drug therapy , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/metabolism , Spleen/immunology , Toll-Like Receptor 9/metabolism
8.
Oncotarget ; 5(16): 6923-35, 2014 Aug 30.
Article in English | MEDLINE | ID: mdl-25071011

ABSTRACT

Downregulation of MHC class I expression on tumour cells, a common mechanism by which tumour cells can escape from specific immune responses, can be associated with coordinated silencing of antigen-presenting machinery genes. The expression of these genes can be restored by IFNγ. In this study we documented association of DNA demethylation of selected antigen-presenting machinery genes located in the MHC genomic locus (TAP-1, TAP-2, LMP-2, LMP-7) upon IFNγ treatment with MHC class I upregulation on tumour cells in several MHC class I-deficient murine tumour cell lines (TC-1/A9, TRAMP-C2, MK16 and MC15). Our data also documented higher methylation levels in these genes in TC-1/A9 cells, as compared to their parental MHC class I-positive TC-1 cells. IFNγ-mediated DNA demethylation was relatively fast in comparison with demethylation induced by DNA methyltransferase inhibitor 5-azacytidine, and associated with increased histone H3 acetylation in the promoter regions of APM genes. Comparative transcriptome analysis in distinct MHC class I-deficient cell lines upon their treatment with either IFNγ or epigenetic agents revealed that a set of genes, significantly enriched for the antigen presentation pathway, was regulated in the same manner. Our data demonstrate that IFNγ acts as an epigenetic modifier when upregulating the expression of antigen-presenting machinery genes.


Subject(s)
Antigen Presentation/genetics , DNA Methylation , Fibrosarcoma/genetics , Genes, MHC Class I , Interferon-gamma/genetics , Interferon-gamma/metabolism , Animals , Down-Regulation , Epigenesis, Genetic , Fibrosarcoma/immunology , Fibrosarcoma/metabolism , Gene Expression Regulation, Neoplastic , Interferon-gamma/immunology , Mice , Mice, Inbred C57BL , Signal Transduction , Transfection , Tumor Cells, Cultured , Up-Regulation
9.
Immunobiology ; 218(6): 851-9, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23182710

ABSTRACT

CD4(+)CD25(+)Foxp3(+) T regulatory cells (Tregs) and CD1d-restricted invariant natural killer T (iNKT) cells are two cell types that are known to regulate immune reactions. Depletion or inactivation of Tregs using specific anti-CD25 antibodies in combination with immunostimulation is an attractive modality especially in anti-tumour immunotherapy. However, CD25 is not expressed exclusively on Tregs but also on subpopulations of activated lymphocytes. Therefore, the modulatory effects of the specific anti-CD25 antibodies can also be partially attributed to their interactions with the effector cells. Here, the effector functions of iNKT cells were analysed in combination with anti-CD25 mAb PC61. Upon PC61 administration, α-galactosylceramide (α-GalCer)-mediated activation of iNKT cells resulted in decreased IFN-γ but not IL-4 production. In order to determine whether mutual interactions between Tregs and iNKT cells take place, we compared IFNγ production after α-GalCer administration in anti-CD25-treated and "depletion of regulatory T cell" (DEREG) mice. Since no profound effects on IFNγ induction were observed in DEREG mice, deficient in FoxP3(+) Tregs, our results indicate that the anti-CD25 antibody acts directly on CD25(+) effector cells. In vivo experiments demonstrated that although both α-GalCer and PC61 administration inhibited TC-1 tumour growth in mice, no additive/synergic effects were observed when these substances were used in combination therapy.


Subject(s)
Antibodies, Monoclonal/pharmacology , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Galactosylceramides/pharmacology , Interferon-gamma/immunology , Interleukin-2 Receptor alpha Subunit/immunology , Natural Killer T-Cells/drug effects , Neoplasms, Experimental/drug therapy , Animals , Antibodies, Monoclonal/administration & dosage , Antibodies, Monoclonal/immunology , Antigens, CD1d/immunology , Antigens, CD1d/metabolism , Cell Line, Tumor , Enzyme-Linked Immunosorbent Assay , Flow Cytometry , Forkhead Transcription Factors/immunology , Forkhead Transcription Factors/metabolism , Galactosylceramides/administration & dosage , Galactosylceramides/immunology , Gene Expression/drug effects , Gene Expression/immunology , Heparin-binding EGF-like Growth Factor , Intercellular Signaling Peptides and Proteins/genetics , Intercellular Signaling Peptides and Proteins/immunology , Intercellular Signaling Peptides and Proteins/metabolism , Interferon-gamma/genetics , Interferon-gamma/metabolism , Interleukin-2 Receptor alpha Subunit/metabolism , Interleukin-4/genetics , Interleukin-4/immunology , Interleukin-4/metabolism , Kaplan-Meier Estimate , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Natural Killer T-Cells/immunology , Natural Killer T-Cells/metabolism , Neoplasms, Experimental/immunology , Neoplasms, Experimental/pathology , Reverse Transcriptase Polymerase Chain Reaction , T-Lymphocytes, Regulatory/drug effects , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , Tumor Burden/drug effects , Tumor Burden/immunology
10.
Int J Oncol ; 36(3): 545-51, 2010 Mar.
Article in English | MEDLINE | ID: mdl-20126973

ABSTRACT

Downregulation of MHC class I expression on the cell surface is a common mechanism by which tumour cells, including cervical carcinoma, can escape the T cell-mediated anti-tumour immunity. This downregulation represents an obstacle for the efficacy of anti-tumour vaccines. In this study, we investigated the efficacy of prophylactic peptide and peptide-pulsed dendritic cell-based vaccines in a murine model of experimental MHC class I-deficient tumours (TC-1/A9), expressing E6/E7 oncogenes derived from HPV16, and compared the efficacy of particular vaccination settings to anti-tumour protection against parental MHC class I-positive TC-1 tumours. Peptide vaccine based on the 'short' peptide E749-57 harbouring solely the CTL epitope and co-administered to the C57BL/6 mice with CpG oligodeoxynucleotide (CpG ODN) 1826 was effective against MHC class I-positive but not -deficient tumours, while the 'longer' peptide E744-62 (peptide 8Q, harbouring CTL and Th epitopes)-based vaccines were also effective against MHC class I-deficient tumours. We have compared the adjuvant efficacies of two CpG ODN, CpG ODN 1826 and CpG ODN 1585. The 8Q peptide immunisation combined with CpG ODN 1585 inhibited growth of the TC-1/A9 tumours more effectively as compared to CpG ODN 1826. Further, we investigated the efficacy of cellular vaccines based on ex vivo cultured dendritic cells pulsed with either E749-57 or E744-62 peptides and matured with CpG ODN 1826. Unlike in the peptide immunisation setting, treatment with dendritic cells pulsed with a 'short' peptide resulted in the tumour growth inhibition, albeit weaker as compared to the immunisation with the longer peptide. Our data demonstrate that peptide and dendritic cell-based vaccines can be designed to elicit protective immunity against MHC class I-deficient tumours.


Subject(s)
Cancer Vaccines/chemistry , Dendritic Cells/cytology , Genes, MHC Class I , Papillomavirus E7 Proteins/chemistry , Animals , CpG Islands , Epitopes/chemistry , Flow Cytometry , Gene Expression Regulation , Humans , Mice , Oligonucleotides/genetics , Peptides/chemistry , Radiotherapy, Adjuvant/methods , Vaccines, Subunit/genetics
11.
Anal Bioanal Chem ; 386(7-8): 2055-62, 2006 Dec.
Article in English | MEDLINE | ID: mdl-17053918

ABSTRACT

Multi walled carbon nanotubes (MWNT) in dimethylformamide (DMF) or aqueous sodium dodecyl sulfate (SDS) solution, colloidal gold nanoparticles (GNP) in phosphate buffer solution (PBS), and a GNP-MWNT mixture in aqueous SDS solution have been investigated for chemical modification of a screen-printed carbon electrode used as the signal transducer of a dsDNA-based biosensor. Differential pulse voltammetry of the DNA redox marker Co[(phen)3]3+ and the guanine moiety anodic oxidation and cyclic voltammetry with K3[Fe(CN)6] as indicator revealed substantial enhancement of the response of the biosensor, particularly when MWNT in SDS solution was used. The biosensor was used in testing of berberine, an isoquinoline plant alkaloid with significant antimicrobial and anticancer activity. Berberine had a very strong, concentration-dependent, effect on the structural stability of DNA from the human cancer cells (U937 cells) whereas non-cancer cells were changed only when berberine concentrations were relatively high 75 and 50 microg mL(-1).


Subject(s)
Berberine/chemistry , Biosensing Techniques/methods , DNA/analysis , DNA/chemistry , Electrochemistry , Nanostructures/chemistry , Neoplasms/chemistry , Cell Line, Tumor , Cobalt/chemistry , Humans , Molecular Structure , Neoplasms/genetics , U937 Cells
12.
Anal Bioanal Chem ; 376(2): 168-73, 2003 May.
Article in English | MEDLINE | ID: mdl-12712310

ABSTRACT

Quercetin and rutin as well as catechin and epigallocatechin gallate were investigated, as widely distributed representatives of flavonols and flavanols, respectively, regarding their anti/pro-oxidant properties. The flavonoids are irreversibly oxidized at a dsDNA-modified screen-printed electrode within 0.368 to 0.449 V vs. SHE without binding to DNA. Using the DNA biosensor the detection scheme of a DNA prevention/degradation exploits the [Co(phen)(3)](3+) complex as an electrochemical DNA marker. Antioxidant activity of flavonoids was tested in a model cleavage mixture composed of 5 x 10(-7) mol L(-1) [Cu(phen)(2)](2+) as the catalyst, 1 x 10(-3) mol L(-1) ascorbic acid as the chemical reductant and atmospheric oxygen as the natural oxidant where reactive oxygen radicals are generated. The antioxidant activity increases with the concentration of flavonoids reaching a maximum where pro-oxidative behaviour becomes of importance. The pro-oxidant potency of flavonoids depends on the presence of atmospheric oxygen and follows the order quercetin>rutin>epigallocatechin gallate>catechin.


Subject(s)
Antioxidants/chemistry , Biosensing Techniques/methods , Catechin/analogs & derivatives , DNA/chemistry , Electrochemistry/methods , Flavonoids/chemistry , Oxidants/chemistry , Antioxidants/analysis , Catechin/analysis , Catechin/chemistry , Flavonoids/analysis , Molecular Structure , Oxidants/analysis , Oxidation-Reduction , Quercetin/analysis , Quercetin/chemistry , Rutin/analysis , Rutin/chemistry
13.
Talanta ; 56(5): 939-47, 2002 Apr 01.
Article in English | MEDLINE | ID: mdl-18968573

ABSTRACT

A simple procedure for the voltammetric detection of the DNA damage and antioxidants protecting DNA from its damage using a disposable electrochemical DNA biosensor is reported. The carbon-based screen-printed electrode (SPE) modified by a surface layer of the calf thymus double stranded (ds) DNA was used as a working electrode in combination with a silver/silver chloride reference electrode and a separate platinum auxiliary electrode. The [Co(phen)(3)](3+) ion served as the dsDNA redox marker and the [Cu(phen)(2)](2+) and [Fe(EDTA)](-) complex compounds were used as the DNA cleavage agents under the reduction by a chemical reductant (ascorbic acid). Four yeast polysaccharides with different chemical structure were investigated as the antioxidants within the concentration range of 0.05-4 mg ml(-1) in the cleavage mixture. A remarkable antioxidative activity of polysaccharides in order mannan (Candida krusei)>extracellular glucomannan (Candida utilis)>mannan (Candida albicans)>glucomannan (C. utilis) was found which is in agreement with that refered to trolox (a structural derivative of alpha-tocopherol) and determined by photochemiluminescent method.

SELECTION OF CITATIONS
SEARCH DETAIL
...