Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
EMBO Mol Med ; 12(4): e11621, 2020 04 07.
Article in English | MEDLINE | ID: mdl-32153125

ABSTRACT

The human PXR (pregnane X receptor), a master regulator of drug metabolism, has essential roles in intestinal homeostasis and abrogating inflammation. Existing PXR ligands have substantial off-target toxicity. Based on prior work that established microbial (indole) metabolites as PXR ligands, we proposed microbial metabolite mimicry as a novel strategy for drug discovery that allows exploiting previously unexplored parts of chemical space. Here, we report functionalized indole derivatives as first-in-class non-cytotoxic PXR agonists as a proof of concept for microbial metabolite mimicry. The lead compound, FKK6 (Felix Kopp Kortagere 6), binds directly to PXR protein in solution, induces PXR-specific target gene expression in cells, human organoids, and mice. FKK6 significantly represses pro-inflammatory cytokine production cells and abrogates inflammation in mice expressing the human PXR gene. The development of FKK6 demonstrates for the first time that microbial metabolite mimicry is a viable strategy for drug discovery and opens the door to underexploited regions of chemical space.


Subject(s)
Molecular Mimicry , Pregnane X Receptor/chemistry , Animals , Cells, Cultured , Cytokines , Humans , Inflammation , Intestines , Ligands , Mice , Organoids
2.
Mol Pharmacol ; 93(6): 631-644, 2018 06.
Article in English | MEDLINE | ID: mdl-29626056

ABSTRACT

Novel methylindoles were identified as endobiotic and xenobiotic ligands of the human aryl hydrocarbon receptor (AhR). We examined the effects of 22 methylated and methoxylated indoles on the transcriptional activity of AhRs. Employing reporter gene assays in AZ-AHR transgenic cells, we determined full agonist, partial agonist, or antagonist activities of tested compounds, having substantially variable EC50, IC50, and relative efficacies. The most effective agonists (EMAX relative to 5 nM dioxin) of the AhR were 4-Me-indole (134%), 6-Me-indole (91%), and 7-MeO-indole (80%), respectively. The most effective antagonists of the AhR included 3-Me-indole (IC50; 19 µM), 2,3-diMe-indole (IC50; 11 µM), and 2,3,7-triMe-indole (IC50; 12 µM). Reverse transcription polymerase chain reaction analyses of CYP1A1 mRNA in LS180 cells confirmed the data from gene reporter assays. The compound leads, 4-Me-indole and 7-MeO-indole, induced substantial nuclear translocation of the AhR and enriched binding of the AhR to the CYP1A1 promoter, as observed using fluorescent immunohistochemistry and chromatin immunoprecipitation assays, respectively. Molecular modeling and docking studies suggest the agonists and antagonists likely share the same binding pocket but have unique binding modes that code for their affinity. Binding pocket analysis further revealed that 4-methylindole and 7-methoxyindole can simultaneously bind to the pocket and produce synergistic interactions. Together, these data show a dependence on subtle and specific chemical indole structures as AhR modulators and furthermore underscore the importance of complete evaluation of indole compounds as nuclear receptor ligands.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/agonists , Basic Helix-Loop-Helix Transcription Factors/antagonists & inhibitors , Indoles/pharmacology , Receptors, Aryl Hydrocarbon/agonists , Receptors, Aryl Hydrocarbon/antagonists & inhibitors , Cell Line, Tumor , Cytochrome P-450 CYP1A1/metabolism , Genes, Reporter/drug effects , Hep G2 Cells , Humans , Ligands , Promoter Regions, Genetic/drug effects , RNA, Messenger/metabolism
3.
Toxicology ; 383: 40-49, 2017 05 15.
Article in English | MEDLINE | ID: mdl-28390928

ABSTRACT

Triazole antimycotic itraconazole contains in its structure three chiral centres; therefore, it forms eight stereoisomers. Commercial preparations of itraconazole are a mixture of four cis-diastereoisomers. There is much evidence that efficacy, adverse effects, and toxicity of chiral drugs may be stereospecific. Therefore, we have prepared 4 pure cis-diastereoisomers of itraconazole and investigated their effects on transcriptional activities of xenoreceptors aryl hydrocarbon receptor AhR and pregnane X receptor PXR. Gene reporter assays showed that itraconazole dose-dependently activated both AhR and PXR, and the activation of AhR but not of PXR was enantiospecific. Itraconazole diastereoisomers transformed AhR and PXR into their DNA-binding forms, as demonstrated by electromobility shift assays. Cytochrome P450 CYP1A1 mRNA and protein were induced by itraconazole diastereoisomers in human hepatoma cells HepG2, human skin cells HaCaT, and in primary human hepatocytes. The expression of CYP3A4 in human intestinal LS180 cells was not influenced by itraconazole, but we observed downregulation of CYP3A4 in human hepatocytes. Collectively, we show that itraconazole is a dual activator of AhR and PXR, with differential effects on the target genes for xenoreceptors. The enantiospecific pattern was observed only in gene reporter assays for AhR. The data presented here might be of toxicological and clinical importance.


Subject(s)
Hepatocytes/drug effects , Itraconazole/chemistry , Itraconazole/pharmacology , Receptors, Aryl Hydrocarbon/metabolism , Receptors, Steroid/metabolism , Antifungal Agents/chemistry , Antifungal Agents/pharmacology , Cell Line , Cell Line, Tumor , Cell Survival/drug effects , Cytochrome P-450 CYP3A Inhibitors/chemistry , Cytochrome P-450 CYP3A Inhibitors/pharmacology , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , Female , Hepatocytes/metabolism , Humans , Middle Aged , Pregnane X Receptor , RNA, Messenger/metabolism , Stereoisomerism
4.
Toxicol Lett ; 262: 173-186, 2016 Nov 16.
Article in English | MEDLINE | ID: mdl-27732883

ABSTRACT

Dihydropyridine calcium channel blockers (CCBs) are used as anti-hypertensives and in the treatment of angina pectoris. Structurally, CCBs have at least one chiral center in the molecule, thereby existing in two or more different enantiomers. In the current paper we examined effects of benidipine, felodipine and isradipine enantiomers on the expression and enzyme activities of human xenobiotics-metabolizing cytochromes P450. All CCBs dose-dependently activated aryl hydrocarbon receptor (AhR) and pregnane X receptor (PXR), as revealed by gene reporter assays. Activation of AhR, but not PXR, was enantiospecific. Consistently, CCBs induced CYP1A1 and CYP1A2 mRNAs, but not protein, in human hepatocytes and HepG2 cells, with following pattern: benidipine (-)>(+), isradipine (-)>(+) and felodipine (+)>(-). All CCBs induced CYP2A6, CYP2B6 and CYP3A4 mRNA and protein in human hepatocytes, and there were not differences between the enantiomers. All CCBs transformed AhR in its DNA-binding form, as revealed by electromobility shift assay. Tested CCBs inhibited enzyme activities of CYP3A4 (benidipine (+)>(-); felodipine (-)>(+); isradipine (-)-(+)) and CYP2C9 (benidipine (-)>(+); felodipine (+)>(-); isradipine (-)>(+)). The data presented here might be of toxicological and clinical importance.


Subject(s)
Calcium Channel Blockers/pharmacology , Cytochrome P-450 Enzyme System/metabolism , Dihydropyridines/pharmacology , Xenobiotics/metabolism , Cell Line , Cell Line, Tumor , Dihydropyridines/chemistry , Dose-Response Relationship, Drug , Hepatocytes/drug effects , Hepatocytes/enzymology , Humans , Isoenzymes/metabolism , RNA, Messenger/biosynthesis , RNA, Messenger/genetics , Receptors, Aryl Hydrocarbon/drug effects , Stereoisomerism , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...