Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
1.
EMBO Rep ; 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38877170

ABSTRACT

T cells are pivotal in the adaptive immune defense, necessitating a delicate balance between robust response against infections and self-tolerance. Their activation involves intricate cross-talk among signaling pathways triggered by the T-cell antigen receptors (TCR) and co-stimulatory or inhibitory receptors. The molecular regulation of these complex signaling networks is still incompletely understood. Here, we identify the adaptor protein ABIN1 as a component of the signaling complexes of GITR and OX40 co-stimulation receptors. T cells lacking ABIN1 are hyper-responsive ex vivo, exhibit enhanced responses to cognate infections, and superior ability to induce experimental autoimmune diabetes in mice. ABIN1 negatively regulates p38 kinase activation and late NF-κB target genes. P38 is at least partially responsible for the upregulation of the key effector proteins IFNG and GZMB in ABIN1-deficient T cells after TCR stimulation. Our findings reveal the intricate role of ABIN1 in T-cell regulation.

2.
Trends Immunol ; 44(11): 890-901, 2023 11.
Article in English | MEDLINE | ID: mdl-37827864

ABSTRACT

The therapeutic potential of interleukin (IL)-2 in cancer treatment has been known for decades, yet its widespread adoption in clinical practice remains limited. Recently, chimeric proteins of an anti-PD-1 antibody and suboptimal IL-2 variants were shown to stimulate potent antitumor and antiviral immunity by inducing unique effector CD8+ T cells in mice. A similar subset of cytotoxic T cells is induced by depletion of regulatory T cells (Tregs), suggesting IL-2 sequestration as a major mechanism through which regulatory T cells suppress activated CD8+ T cells. Here, we present our view of how IL-2-based biologicals can boost the antitumor response at a cellular level, and propose that the role of Tregs following such treatments may have been previously overestimated.


Subject(s)
CD8-Positive T-Lymphocytes , Interleukin-2 , Mice , Animals , Interleukin-2/therapeutic use , Interleukin-2/metabolism , Immunotherapy , T-Lymphocytes, Cytotoxic , T-Lymphocytes, Regulatory , Phenotype
3.
Eur J Med Chem ; 259: 115674, 2023 Nov 05.
Article in English | MEDLINE | ID: mdl-37536209

ABSTRACT

Neutral sphingomyelinase 2 (nSMase2) has gained increasing attention as a therapeutic target to regulate ceramide production in various disease conditions. Phenyl (R)-(1-(3-(3,4-dimethoxyphenyl)-2,6-dimethylimidazo[1,2-b]pyridazin-8-yl)-pyrrolidin-3-yl)carbamate (PDDC) is a submicromolar nSMase2 inhibitor and has been widely used to study the pharmacological effects of nSMase2 inhibition. Through screening of compounds containing a bicyclic 5-6 fused ring, larotrectinib containing a pyrazolo[1,5-a]pyrimidine ring was identified as a low micromolar inhibitor of nSMase2. This prompted us to investigate the pyrazolo[1,5-a]pyrimidin-3-amine ring as a novel scaffold to replace the imidazo[1,2-b]pyridazine-8-amine ring of PDDC. A series of molecules containing a pyrazolo[1,5-a]pyrimidin-3-amine ring were synthesized and tested for their ability to inhibit human nSMase2. Several compounds exhibited nSMase2 inhibitory potency superior to that of PDDC. Among these, N,N-dimethyl-5-morpholinopyrazolo[1,5-a]pyrimidin-3-amine (11j) was found to be metabolically stable in liver microsomes and orally available with a favorable brain-to-plasma ratio, demonstrating the potential of pyrazolo[1,5-a]pyrimidine ring as an effective scaffold for nSMase2 inhibition.


Subject(s)
Amines , Sphingomyelin Phosphodiesterase , Humans , Pyrimidines/pharmacology , Ceramides
4.
PLoS One ; 18(4): e0283431, 2023.
Article in English | MEDLINE | ID: mdl-37023062

ABSTRACT

Linker for activation of T cells (LAT) plays a key role in T-cell antigenic signaling in mammals. Accordingly, LAT orthologues were identified in the majority of vertebrates. However, LAT orthologues were not identified in most birds. In this study, we show that LAT gene is present in genomes of multiple extant birds. It was not properly assembled previously because of its GC-rich content. LAT expression is enriched in lymphoid organs in chicken. The analysis of the coding sequences revealed a strong conservation of key signaling motifs in LAT between chicken and human. Overall, our data indicate that mammalian and avian LAT genes are functional homologues with a common role in T-cell signaling.


Subject(s)
Adaptor Proteins, Signal Transducing , Membrane Proteins , Animals , Humans , Adaptor Proteins, Signal Transducing/genetics , Membrane Proteins/genetics , T-Lymphocytes/metabolism , Genome , Chickens/genetics , Chickens/metabolism , Mammals/genetics , Phosphoproteins/metabolism
5.
Curr Opin Immunol ; 82: 102299, 2023 06.
Article in English | MEDLINE | ID: mdl-36913776

ABSTRACT

Antigen-induced memory T cells undergo counterintuitive activation in an antigen-independent manner, which is called bystander response. Although it is well documented that memory CD8+ T cells produce IFNγ and upregulate the cytotoxic program upon the stimulation with inflammatory cytokines, there is only rare evidence that this provides an actual protection against pathogens in immunocompetent individuals. One of the reasons might be numerous antigen-inexperienced memory-like T cells that are also capable of the bystander response. Little is known about the bystander protection of memory and memory-like T cells and their redundancies with innate-like lymphocytes in humans because of the interspecies differences and the lack of controlled experiments. However, it has been proposed that IL-15/NKG2D-driven bystander activation of memory T cells drives protection or immunopathology in particular human diseases.


Subject(s)
CD8-Positive T-Lymphocytes , Lymphocyte Activation , Humans , Antigens , Cytokines , Immunologic Memory
6.
Elife ; 122023 01 27.
Article in English | MEDLINE | ID: mdl-36705564

ABSTRACT

Regulatory T cells (Tregs) are indispensable for maintaining self-tolerance by suppressing conventional T cells. On the other hand, Tregs promote tumor growth by inhibiting anticancer immunity. In this study, we identified that Tregs increase the quorum of self-reactive CD8+ T cells required for the induction of experimental autoimmune diabetes in mice. Their major suppression mechanism is limiting available IL-2, an essential T-cell cytokine. Specifically, Tregs inhibit the formation of a previously uncharacterized subset of antigen-stimulated KLRK1+ IL-7R+ (KILR) CD8+ effector T cells, which are distinct from conventional effector CD8+ T cells. KILR CD8+ T cells show superior cell-killing abilities in vivo. The administration of agonistic IL-2 immunocomplexes phenocopies the absence of Tregs, i.e., it induces KILR CD8+ T cells, promotes autoimmunity, and enhances antitumor responses in mice. Counterparts of KILR CD8+ T cells were found in the human blood, revealing them as a potential target for immunotherapy.


As well as protecting us from invading pathogens, like bacteria or viruses, our immune system can also identify dangerous cells of our own that may cause the body harm, such as cancer cells. Once detected, a population of immune cells called cytotoxic T cells launch into action to kill the potentially harmful cell. However, sometimes the immune system makes mistakes and attacks healthy cells which it misidentifies as being dangerous, leading to autoimmune diseases. Special immune cells called T regulatory lymphocytes, or 'Tregs', can suppress the activity of cytotoxic T cells, preventing them from hurting the body's own cells. While this can have a positive impact and reduce the effects of autoimmunity, Tregs can also make the immune system less responsive to cancer cells and allow tumors to grow. But how Tregs alter the behavior of cytotoxic T cells during autoimmune diseases and cancer is poorly understood. While multiple mechanisms have been proposed, none of these have been tested in living animal models of these diseases. To address this, Tsyklauri et al. studied Tregs in laboratory mice which had been modified to have autoimmune diabetes, which is when the body attacks the cells responsible for producing insulin. The experiments revealed that Tregs take up a critical signaling molecule called IL-2 which cytotoxic T cells need to survive and multiply. As a result, there is less IL-2 molecules available in the environment, inhibiting the cytotoxic T cells' activity. Furthermore, if Tregs are absent and there is an excess of IL-2, this causes cytotoxic T cells to transition into a previously unknown subset of T cells with superior killing abilities. Tsyklauri et al. were able to replicate these findings in two different groups of laboratory mice which had been modified to have cancer. This suggests that Tregs suppress the immune response to cancer cells and prevent autoimmunity using the same mechanism. In the future, this work could help researchers to develop therapies that alter the behavior of cytotoxic T cells and/or Tregs to either counteract autoimmune diseases, or help the body fight off cancer.


Subject(s)
Diabetes Mellitus, Type 1 , T-Lymphocytes, Regulatory , Animals , Humans , Mice , CD8-Positive T-Lymphocytes , Diabetes Mellitus, Type 1/pathology , Immune Tolerance , Interleukin-2 , NK Cell Lectin-Like Receptor Subfamily K , Receptors, Interleukin-7
7.
Nat Immunol ; 24(1): 174-185, 2023 01.
Article in English | MEDLINE | ID: mdl-36564464

ABSTRACT

The kinase LCK and CD4/CD8 co-receptors are crucial components of the T cell antigen receptor (TCR) signaling machinery, leading to key T cell fate decisions. Despite decades of research, the roles of CD4-LCK and CD8-LCK interactions in TCR triggering in vivo remain unknown. In this study, we created animal models expressing endogenous levels of modified LCK to resolve whether and how co-receptor-bound LCK drives TCR signaling. We demonstrated that the role of LCK depends on the co-receptor to which it is bound. The CD8-bound LCK is largely dispensable for antiviral and antitumor activity of cytotoxic T cells in mice; however, it facilitates CD8+ T cell responses to suboptimal antigens in a kinase-dependent manner. By contrast, the CD4-bound LCK is required for efficient development and function of helper T cells via a kinase-independent stabilization of surface CD4. Overall, our findings reveal the role of co-receptor-bound LCK in T cell biology, show that CD4- and CD8-bound LCK drive T cell development and effector immune responses using qualitatively different mechanisms and identify the co-receptor-LCK interactions as promising targets for immunomodulation.


Subject(s)
Lymphocyte Specific Protein Tyrosine Kinase p56(lck) , T-Lymphocytes, Cytotoxic , Mice , Animals , T-Lymphocytes, Cytotoxic/metabolism , Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/metabolism , CD4 Antigens , Signal Transduction , Receptors, Antigen, T-Cell/metabolism , CD8 Antigens/metabolism
8.
Front Immunol ; 13: 1009198, 2022.
Article in English | MEDLINE | ID: mdl-36275704

ABSTRACT

Mature T cells are selected for recognizing self-antigens with low to intermediate affinity in the thymus. Recently, the relative differences in self-reactivity among individual T-cell clones were appreciated as important factors regulating their fate and immune response, but the role of self-reactivity in T-cell biology is incompletely understood. We addressed the role of self-reactivity in T-cell diversity by generating an atlas of mouse peripheral CD8+ T cells, which revealed two unconventional populations of antigen-inexperienced T cells. In the next step, we examined the steady-state phenotype of monoclonal T cells with various levels of self-reactivity. Highly self-reactive clones preferentially differentiate into antigen-inexperienced memory-like cells, but do not form a population expressing type I interferon-induced genes, showing that these two subsets have unrelated origins. The functional comparison of naïve monoclonal CD8+ T cells specific to the identical model antigen did not show any correlation between the level of self-reactivity and the magnitude of the immune response.


Subject(s)
CD8-Positive T-Lymphocytes , Interferon Type I , Mice , Animals , Thymus Gland , Clone Cells , Autoantigens
9.
Nat Immunol ; 23(11): 1644-1652, 2022 11.
Article in English | MEDLINE | ID: mdl-36271145

ABSTRACT

Interleukin-17A (IL-17A) is a key mediator of protective immunity to yeast and bacterial infections but also drives the pathogenesis of several autoimmune diseases, such as psoriasis or psoriatic arthritis. Here we show that the tetra-transmembrane protein CMTM4 is a subunit of the IL-17 receptor (IL-17R). CMTM4 constitutively associated with IL-17R subunit C to mediate its stability, glycosylation and plasma membrane localization. Both mouse and human cell lines deficient in CMTM4 were largely unresponsive to IL-17A, due to their inability to assemble the IL-17R signaling complex. Accordingly, CMTM4-deficient mice had a severe defect in the recruitment of immune cells following IL-17A administration and were largely resistant to experimental psoriasis, but not to experimental autoimmune encephalomyelitis. Collectively, our data identified CMTM4 as an essential component of IL-17R and a potential therapeutic target for treating IL-17-mediated autoimmune diseases.


Subject(s)
Arthritis, Psoriatic , Encephalomyelitis, Autoimmune, Experimental , Psoriasis , Humans , Mice , Animals , Receptors, Interleukin-17/genetics , Receptors, Interleukin-17/metabolism , Interleukin-17/metabolism , Encephalomyelitis, Autoimmune, Experimental/genetics , MARVEL Domain-Containing Proteins/genetics
10.
ChemMedChem ; 17(21): e202200385, 2022 Nov 04.
Article in English | MEDLINE | ID: mdl-36115047

ABSTRACT

Ketoconazole (KTZ) is an imidazole drug applied topically to treat numerous skin infections. However, as a systemic antifungal, KTZ' efficacy and safety no longer justify its use as a first-line treatment. Azole conjugates often display higher solubility and better antifungal activities than their parent azoles. Accordingly, we aimed at developing suitable linkers for clickable azole conjugation with a second antifungal molecule, and targeted drug delivery towards improving antifungal activity. For its low price and high availability, we selected KTZ as a molecular scaffold to introduce such chemical modifications. We prepared a series of piperazine-modified KTZ derivatives and we evaluated their in vitro antifungal and antitrypanosomal activity against fourteen strains of pathogenic fungi and two strains of Trypanosoma parasites. Several compounds were more effective against the pathogens than KTZ. Compound 5 was 24 times more potent against Aspergillus flavus and 8 times more potent against A. fumigatus than KTZ, with similarly low cytotoxicity to HEK cells up to 100 µM. Derivative 6 had 9- and 7-fold higher activity against T. brucei gambiense and T. brucei brucei than KTZ, respectively, and inhibited trypanosoma growth at single micromolar EC50 values. Combined, our findings will foster further research of piperazine-modified KTZs as promising antifungal and antiparasitic drugs towards enhancing the properties of both KTZ and other azole derivatives.


Subject(s)
Antifungal Agents , Ketoconazole , Ketoconazole/pharmacology , Ketoconazole/chemistry , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Azoles
11.
Mol Biol Evol ; 39(2)2022 02 03.
Article in English | MEDLINE | ID: mdl-34893856

ABSTRACT

Domestic sheep and their wild relatives harbor substantial genetic variants that can form the backbone of molecular breeding, but their genome landscapes remain understudied. Here, we present a comprehensive genome resource for wild ovine species, landraces and improved breeds of domestic sheep, comprising high-coverage (∼16.10×) whole genomes of 810 samples from 7 wild species and 158 diverse domestic populations. We detected, in total, ∼121.2 million single nucleotide polymorphisms, ∼61 million of which are novel. Some display significant (P < 0.001) differences in frequency between wild and domestic species, or are private to continent-wide or individual sheep populations. Retained or introgressed wild gene variants in domestic populations have contributed to local adaptation, such as the variation in the HBB associated with plateau adaptation. We identified novel and previously reported targets of selection on morphological and agronomic traits such as stature, horn, tail configuration, and wool fineness. We explored the genetic basis of wool fineness and unveiled a novel mutation (chr25: T7,068,586C) in the 3'-UTR of IRF2BP2 as plausible causal variant for fleece fiber diameter. We reconstructed prehistorical migrations from the Near Eastern domestication center to South-and-Southeast Asia and found two main waves of migrations across the Eurasian Steppe and the Iranian Plateau in the Early and Late Bronze Ages. Our findings refine our understanding of genome variation as shaped by continental migrations, introgression, adaptation, and selection of sheep.


Subject(s)
Genome , Sheep, Domestic , Animals , Asia , Europe , Genetic Variation , Iran , Polymorphism, Single Nucleotide , Sequence Analysis, DNA , Sheep/genetics , Sheep, Domestic/genetics
12.
J Cell Sci ; 134(16)2021 08 15.
Article in English | MEDLINE | ID: mdl-34423835

ABSTRACT

Components of the intraflagellar transport (IFT) system that regulates the assembly of the primary cilium are co-opted by the non-ciliated T cell to orchestrate polarized endosome recycling and to sustain signaling during immune synapse formation. Here, we investigated the potential role of Bardet-Biedl syndrome 1 protein (BBS1), an essential core component of the BBS complex that cooperates with the IFT system in ciliary protein trafficking, in the assembly of the T cell synapse. We demonstrated that BBS1 allows for centrosome polarization towards the immune synapse. This function is achieved through the clearance of centrosomal F-actin and its positive regulator WASH1 (also known as WASHC1), a process that we demonstrated to be dependent on the proteasome. We show that BBS1 regulates this process by coupling the 19S proteasome regulatory subunit to the microtubule motor dynein for its transport to the centrosome. Our data identify the ciliopathy-related protein BBS1 as a new player in T cell synapse assembly that functions upstream of the IFT system to set the stage for polarized vesicular trafficking and sustained signaling. This article has an associated First Person interview with the first author of the paper.


Subject(s)
Bardet-Biedl Syndrome , Cilia , Bardet-Biedl Syndrome/genetics , Cell Polarity , Endosomes , Humans , Microtubule-Associated Proteins/genetics , Synapses , T-Lymphocytes
13.
Science ; 372(6546): 1038-1039, 2021 06 04.
Article in English | MEDLINE | ID: mdl-34083474
14.
J Immunol ; 206(9): 2109-2121, 2021 05 01.
Article in English | MEDLINE | ID: mdl-33858960

ABSTRACT

Ag-inexperienced memory-like T (AIMT) cells are functionally unique T cells, representing one of the two largest subsets of murine CD8+ T cells. However, differences between laboratory inbred strains, insufficient data from germ-free mice, a complete lack of data from feral mice, and an unclear relationship between AIMT cells formation during aging represent major barriers for better understanding of their biology. We performed a thorough characterization of AIMT cells from mice of different genetic background, age, and hygienic status by flow cytometry and multiomics approaches, including analyses of gene expression, TCR repertoire, and microbial colonization. Our data showed that AIMT cells are steadily present in mice, independent of their genetic background and hygienic status. Despite differences in their gene expression profiles, young and aged AIMT cells originate from identical clones. We identified that CD122 discriminates two major subsets of AIMT cells in a strain-independent manner. Whereas thymic CD122LOW AIMT cells (innate memory) prevail only in young animals with high thymic IL-4 production, peripheral CD122HIGH AIMT cells (virtual memory) dominate in aged mice. Cohousing with feral mice changed the bacterial colonization of laboratory strains but had only minimal effects on the CD8+ T cell compartment, including AIMT cells.


Subject(s)
Aging/genetics , Antigens/genetics , Immunologic Memory/genetics , T-Lymphocytes/immunology , Aging/immunology , Animals , Antigens/immunology , Clonal Evolution , Genomic Instability , Immunologic Memory/immunology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Transgenic , Phenotype
15.
Eur J Immunol ; 51(3): 512-530, 2021 03.
Article in English | MEDLINE | ID: mdl-33501647

ABSTRACT

Regulatory T cells (Tregs) play a key role in the peripheral self-tolerance and preventing autoimmunity. While classical CD4+ Foxp3+ Tregs are well established, their CD8+ counterparts are still controversial in many aspects including their phenotypic identity and their mechanisms of suppression. Because of these controversies and because of only a limited number of studies documenting the immunoregulatory function of CD8+ Tregs in vivo, the concept of CD8+ Tregs is still not unanimously accepted. We propose that any T-cell subset considered as true regulatory must be distinguishable from other cell types and must suppress in vivo immune responses via a known mechanism. In this article, we revisit the concept of CD8+ Tregs by focusing on the characterization of individual CD8+ T-cell subsets with proposed regulatory capacity separately. Therefore, we review the phenotype and function of CD8+ FOXP3+ T cells, CD8+ CD122+ T cells, CD8+ CD28low/- T cells, CD8+ CD45RClow T cells, T cells expressing CD8αα homodimer and Qa-1-restricted CD8+ T cells to show whether there is sufficient evidence to establish these subsets as bona fide Tregs. Based on the intrinsic ability of CD8+ Treg subsets to promote immune tolerance in animal models, we elaborate on their potential use in clinics.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , T-Lymphocytes, Regulatory/immunology , Animals , CD28 Antigens/immunology , Humans , Immune Tolerance/immunology , Phenotype , T-Lymphocyte Subsets/immunology
16.
EMBO Rep ; 22(2): e50785, 2021 02 03.
Article in English | MEDLINE | ID: mdl-33426789

ABSTRACT

Bardet-Biedl Syndrome (BBS) is a pleiotropic genetic disease caused by the dysfunction of primary cilia. The immune system of patients with ciliopathies has not been investigated. However, there are multiple indications that the impairment of the processes typically associated with cilia may have influence on the hematopoietic compartment and immunity. In this study, we analyze clinical data of BBS patients and corresponding mouse models carrying mutations in Bbs4 or Bbs18. We find that BBS patients have a higher prevalence of certain autoimmune diseases. Both BBS patients and animal models have altered red blood cell and platelet compartments, as well as elevated white blood cell levels. Some of the hematopoietic system alterations are associated with BBS-induced obesity. Moreover, we observe that the development and homeostasis of B cells in mice is regulated by the transport complex BBSome, whose dysfunction is a common cause of BBS. The BBSome limits canonical WNT signaling and increases CXCL12 levels in bone marrow stromal cells. Taken together, our study reveals a connection between a ciliopathy and dysregulated immune and hematopoietic systems.


Subject(s)
Autoimmune Diseases , Bardet-Biedl Syndrome , Hematopoiesis , Animals , Bardet-Biedl Syndrome/complications , Bardet-Biedl Syndrome/genetics , Cilia , Disease Models, Animal , Hematopoiesis/genetics , Humans , Mice , Microtubule-Associated Proteins/genetics , Mutation
17.
Nat Commun ; 12(1): 99, 2021 01 04.
Article in English | MEDLINE | ID: mdl-33397934

ABSTRACT

CD4 and CD8 mark helper and cytotoxic T cell lineages, respectively, and serve as coreceptors for MHC-restricted TCR recognition. How coreceptor expression is matched with TCR specificity is central to understanding CD4/CD8 lineage choice, but visualising coreceptor gene activity in individual selection intermediates has been technically challenging. It therefore remains unclear whether the sequence of coreceptor gene expression in selection intermediates follows a stereotypic pattern, or is responsive to signaling. Here we use single cell RNA sequencing (scRNA-seq) to classify mouse thymocyte selection intermediates by coreceptor gene expression. In the unperturbed thymus, Cd4+Cd8a- selection intermediates appear before Cd4-Cd8a+ selection intermediates, but the timing of these subsets is flexible according to the strength of TCR signals. Our data show that selection intermediates discriminate MHC class prior to the loss of coreceptor expression and suggest a model where signal strength informs the timing of coreceptor gene activity and ultimately CD4/CD8 lineage choice.


Subject(s)
CD4-Positive T-Lymphocytes/cytology , CD8-Positive T-Lymphocytes/cytology , Cell Differentiation/immunology , Cell Lineage/immunology , Thymus Gland/cytology , Thymus Gland/immunology , Animals , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Core Binding Factor Alpha 3 Subunit/metabolism , Cytokines/metabolism , DNA-Binding Proteins/metabolism , Gene Expression Regulation , Histocompatibility Antigens/metabolism , Lymphocyte Activation/genetics , Mice, Inbred C57BL , Principal Component Analysis , RNA, Messenger/genetics , RNA, Messenger/metabolism , Receptors, Antigen, T-Cell/metabolism , Signal Transduction , Transcription Factors/metabolism
18.
FEBS J ; 288(6): 1778-1788, 2021 03.
Article in English | MEDLINE | ID: mdl-32738029

ABSTRACT

It has been appreciated for more than three decades that the interactions between the T-cell antigen receptor and self-antigens are the major determinants of the cell fates of developing thymocytes and the establishment of central tolerance. However, recent evidence shows that the level of self-reactivity substantially contributes to fate choices of positively selected mature T cells in homeostasis, as well as during immune responses. This implies that individual clones of peripheral T cells are predisposed to specific functional properties based on the self-reactivity of their antigen receptors. Overall, the relative difference in the self-reactivity among peripheral T cells is an important factor contributing to the diversity of T-cell responses to foreign antigens.


Subject(s)
Autoantigens/immunology , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Receptors, Antigen, T-Cell/immunology , Thymus Gland/immunology , Animals , CD4-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/metabolism , Humans , Lymphocyte Activation/immunology , Nuclear Receptor Subfamily 4, Group A, Member 1/immunology , Nuclear Receptor Subfamily 4, Group A, Member 1/metabolism , Receptors, Antigen, T-Cell/metabolism , Thymocytes/cytology , Thymocytes/immunology , Thymus Gland/cytology
19.
Mol Biol Evol ; 38(3): 838-855, 2021 03 09.
Article in English | MEDLINE | ID: mdl-32941615

ABSTRACT

How animals, particularly livestock, adapt to various climates and environments over short evolutionary time is of fundamental biological interest. Further, understanding the genetic mechanisms of adaptation in indigenous livestock populations is important for designing appropriate breeding programs to cope with the impacts of changing climate. Here, we conducted a comprehensive genomic analysis of diversity, interspecies introgression, and climate-mediated selective signatures in a global sample of sheep and their wild relatives. By examining 600K and 50K genome-wide single nucleotide polymorphism data from 3,447 samples representing 111 domestic sheep populations and 403 samples from all their seven wild relatives (argali, Asiatic mouflon, European mouflon, urial, snow sheep, bighorn, and thinhorn sheep), coupled with 88 whole-genome sequences, we detected clear signals of common introgression from wild relatives into sympatric domestic populations, thereby increasing their genomic diversities. The introgressions provided beneficial genetic variants in native populations, which were significantly associated with local climatic adaptation. We observed common introgression signals of alleles in olfactory-related genes (e.g., ADCY3 and TRPV1) and the PADI gene family including in particular PADI2, which is associated with antibacterial innate immunity. Further analyses of whole-genome sequences showed that the introgressed alleles in a specific region of PADI2 (chr2: 248,302,667-248,306,614) correlate with resistance to pneumonia. We conclude that wild introgression enhanced climatic adaptation and resistance to pneumonia in sheep. This has enabled them to adapt to varying climatic and environmental conditions after domestication.


Subject(s)
Adaptation, Biological/genetics , Disease Resistance/genetics , Genetic Introgression , Sheep/genetics , Animals , Biological Evolution , Climate Change , Genetic Variation , Phylogeography , Pneumonia/immunology , Sheep/immunology
20.
J Biol Chem ; 295(42): 14279-14290, 2020 10 16.
Article in English | MEDLINE | ID: mdl-32759308

ABSTRACT

Bardet-Biedl syndrome (BBS) is a pleiotropic ciliopathy caused by dysfunction of primary cilia. More than half of BBS patients carry mutations in one of eight genes encoding for subunits of a protein complex, the BBSome, which mediates trafficking of ciliary cargoes. In this study, we elucidated the mechanisms of the BBSome assembly in living cells and how this process is spatially regulated. We generated a large library of human cell lines deficient in a particular BBSome subunit and expressing another subunit tagged with a fluorescent protein. We analyzed these cell lines utilizing biochemical assays, conventional and expansion microscopy, and quantitative fluorescence microscopy techniques: fluorescence recovery after photobleaching and fluorescence correlation spectroscopy. Our data revealed that the BBSome formation is a sequential process. We show that the pre-BBSome is nucleated by BBS4 and assembled at pericentriolar satellites, followed by the translocation of the BBSome into the ciliary base mediated by BBS1. Our results provide a framework for elucidating how BBS-causative mutations interfere with the biogenesis of the BBSome.


Subject(s)
Microtubule-Associated Proteins/metabolism , Bardet-Biedl Syndrome/genetics , Bardet-Biedl Syndrome/metabolism , Bardet-Biedl Syndrome/pathology , CRISPR-Cas Systems/genetics , Cell Line , Cilia/metabolism , Cytoplasm/metabolism , Fluorescence Recovery After Photobleaching , Gene Editing , Humans , Microscopy, Fluorescence , Microtubule-Associated Proteins/deficiency , Microtubule-Associated Proteins/genetics , Mutation , Protein Subunits/genetics , Protein Subunits/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...