Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
In Vitro Cell Dev Biol Anim ; 57(5): 531-538, 2021 May.
Article in English | MEDLINE | ID: mdl-34021475

ABSTRACT

Template activating factor-I (TAF-I) is a multifunctional protein involved in various biological processes including the inhibition of histone acetylation, DNA replication, cell cycle regulation, and oncogenesis. Two main TAF-I isoforms with different N-termini, TAF-Iα and TAF-Iß (SET), are expressed in cells. There are numerous data about functional properties of TAF-Iß, whereas the effects of TAF-Iα remain largely unexplored. Here, we employed focus formation and cell proliferation assays, TUNEL staining, cytological analysis, and RT-qPCR to compare the effects of human TAF-Iα and TAF-Iß genes, transiently expressed in Rat2 cells and in Misgurnus fossilis loaches. We found that both TAF-I isoforms possessed equal oncogenic potential in these systems. Furthermore, an overexpression of human TAF-Iα and TAF-Iß in Rat2 cells promoted their proliferation. Accordingly, the mitotic index was increased in the transgenic loaches expressing human TAF-Iα or TAF-Iß. TUNEL assay as well as downregulation of p53 gene and upregulation of bcl-2 gene in these transgenic loaches demonstrated that both isoforms suppressed apoptosis. Thus, TAF-Iα isoform exerts the same oncogenic potential as TAF-Iß, likely by suppressing the apoptosis and promoting cell proliferation.


Subject(s)
Apoptosis , Cell Proliferation , Cell Transformation, Neoplastic/metabolism , DNA-Binding Proteins/physiology , Histone Chaperones/physiology , Animals , Animals, Genetically Modified , Cypriniformes , Fibroblasts/metabolism , Humans , Mitosis , Real-Time Polymerase Chain Reaction
2.
Genes Immun ; 22(1): 56-63, 2021 05.
Article in English | MEDLINE | ID: mdl-33864033

ABSTRACT

TRIM14 is an important component of innate immunity that defends organism from various viruses. It was shown that TRIM14 restricted influenza A virus (IAV) infection in cell cultures in an interferon-independent manner. However, it remained unclear whether TRIM14 affects IAV reproduction and immune system responses upon IAV infection in vivo. In order to investigate the effects of TRIM14 at the organismal level we generated transgenic mice overexpressing human TRIM14 gene. We found that IAV reproduction was strongly inhibited in lungs of transgenic mice, resulting in the increased survival of transgenic animals. Strikingly, upon IAV infection, the transcription of genes encoding interferons, IL-6, IL-1ß, and TNFα was notably weaker in lungs of transgenic animals than that in control mice, thus indicating the absence of significant induction of interferon and inflammatory responses. In spleen of transgenic mice, where TRIM14 was unexpectedly downregulated, upon IAV infection the transcription of genes encoding interferons was oppositely increased. Therefore, we demonstrated the key role of TRIM14 in anti-IAV protection in the model organism that is realized without noticeable activation of other innate immune system pathways.


Subject(s)
Influenza A virus , Influenza, Human , Orthomyxoviridae Infections , Animals , Host-Pathogen Interactions , Humans , Immunity, Innate/genetics , Intracellular Signaling Peptides and Proteins , Mice , Mice, Transgenic , Tripartite Motif Proteins
3.
Mol Biol Rep ; 45(6): 2087-2093, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30203243

ABSTRACT

The tripartite-motif (TRIM)14 protein, one of the TRIM family members, was shown to participate in the antiviral and antibacterial defence. Besides, it appears to play an essential role in the processes of oncogenesis. In some types of human tumour cells, TRIM14 has been shown to inhibit apoptosis, while in others-the overexpression of TRIM14 promotes apoptosis. However, whether TRIM14 mediates apoptosis in the normal cells remains unknown. In the present study, we investigated the possible participation of the human TRIM14 gene and its mutant form (620C > T) in the induction of apoptosis in the transgenic larvae loach Misgurnus fossilis L. We observed that the expression of both forms of TRIM14 gene was accompanied by the increase of the frequency of pyknotic nuclei in fish embryos compared to control groups. Accordingly, using the TUNEL assay, the enhanced apoptosis was revealed upon expression of both forms of TRIM14 gene. The transcription of proapoptotic genes (bax, tp53, and casp9) was significantly increased in transgenic loaches expressing human wild-type TRIM14, but remained unchanged upon expression of its mutant form. In addition, the transcription of c-myc was upregulated in transgenic loaches expressing both forms. Thus, it can be assumed that during embryonic development TRIM14 has a proapoptotic effect on the cells via the activation of c-myc, tp53, and bax genes. Apparently, the mutant TRIM14 directs apoptosis via c-myc by p53-independent mechanism.


Subject(s)
Apoptosis/genetics , Carrier Proteins/genetics , Animals , Animals, Genetically Modified/genetics , Carrier Proteins/physiology , Caspase 9 , Cell Line, Tumor , Cell Transformation, Neoplastic , Cypriniformes/genetics , Cypriniformes/metabolism , Humans , Intracellular Signaling Peptides and Proteins , Polymorphism, Single Nucleotide/genetics , Signal Transduction , Tripartite Motif Proteins , Tumor Suppressor Protein p53 , bcl-2-Associated X Protein
SELECTION OF CITATIONS
SEARCH DETAIL
...