Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Microb Ecol ; 83(1): 1-17, 2022 Jan.
Article in English | MEDLINE | ID: mdl-33730193

ABSTRACT

The wetlands and salt flats of the Central Andes region are unique extreme environments as they are located in high-altitude saline deserts, largely influenced by volcanic activity. Environmental factors, such as ultraviolet (UV) radiation, arsenic content, high salinity, low dissolved oxygen content, extreme daily temperature fluctuation, and oligotrophic conditions, resemble the early Earth and potentially extraterrestrial conditions. The discovery of modern microbialites and microbial mats in the Central Andes during the past decade has increased the interest in this area as an early Earth analog. In this work, we review the current state of knowledge of Central Andes region environments found within lakes, small ponds or puquios, and salt flats of Argentina, Chile, and Bolivia, many of them harboring a diverse range of microbial communities that we have termed Andean Microbial Ecosystems (AMEs). We have integrated the data recovered from all the known AMEs and compared their biogeochemistry and microbial diversity to achieve a better understanding of them and, consequently, facilitate their protection.


Subject(s)
Microbiota , Wetlands , Geologic Sediments/chemistry , Lakes/chemistry , Salinity
2.
PLoS One ; 16(12): e0261410, 2021.
Article in English | MEDLINE | ID: mdl-34941914

ABSTRACT

BACKGROUND: Patients with cystic fibrosis (CF) need costly medical care and adequate therapy with expensive medicinal products. Tigerase® is the first biosimilar of dornase alfa, developed by the lead Russian biotechnology company GENERIUM. The aim of the manuscript to present post hoc sub-analysis of patients' data with cystic fibrosis and severe pulmonary impairment of a larger comparative study (phase III open label, prospective, multi-centre, randomized study (NCT04468100)) of a generic version of recombinant human DNase Tigerase® to the only comparable drug, Pulmozyme®. METHODS: In the analyses included subgroup of 46 severe pulmonary impairment patients with baseline FEV1 level 40-60% of predicted (23 patients in each treatment group) out of 100 patients registered in the study phase III open label, prospective, multi-center, randomized study (NCT04468100), and compared efficacy endpoints (FEV1, FVC, number and time of exacerbations, body weight, St.George's Respiratory Questionnaire) as well as safety parameters (AEs, SAEs, anti-drug antibody) within 24 treatment weeks. RESULTS: All outcomes were comparable among the studied groups. In the efficacy dataset, the similar mean FEV1 and mean FVC changes for 24 weeks of both treatment groups were observed. The groups were also comparable in safety, all the secondary efficacy parameters and immunogenicity. CONCLUSIONS: The findings from this study support the clinical Tigerase® biosimilarity to Pulmozyme® administered in CF patients with severe impairment of pulmonary function.


Subject(s)
Biosimilar Pharmaceuticals/therapeutic use , Cystic Fibrosis/drug therapy , Deoxyribonuclease I/therapeutic use , Deoxyribonucleases/therapeutic use , Adult , Biosimilar Pharmaceuticals/chemical synthesis , Cystic Fibrosis/complications , Cystic Fibrosis/physiopathology , Deoxyribonuclease I/chemistry , Deoxyribonuclease I/metabolism , Expectorants/therapeutic use , Female , Forced Expiratory Volume , Humans , Lung/physiopathology , Lung Diseases/drug therapy , Lung Diseases/physiopathology , Male , Middle Aged , Mucociliary Clearance , Prospective Studies , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Recombinant Proteins/pharmacology , Recombinant Proteins/therapeutic use
3.
JAMA ; 326(3): 230-239, 2021 07 20.
Article in English | MEDLINE | ID: mdl-34283183

ABSTRACT

Importance: Effective treatments for patients with severe COVID-19 are needed. Objective: To evaluate the efficacy of canakinumab, an anti-interleukin-1ß antibody, in patients hospitalized with severe COVID-19. Design, Setting, and Participants: This randomized, double-blind, placebo-controlled phase 3 trial was conducted at 39 hospitals in Europe and the United States. A total of 454 hospitalized patients with COVID-19 pneumonia, hypoxia (not requiring invasive mechanical ventilation [IMV]), and systemic hyperinflammation defined by increased blood concentrations of C-reactive protein or ferritin were enrolled between April 30 and August 17, 2020, with the last assessment of the primary end point on September 22, 2020. Intervention: Patients were randomly assigned 1:1 to receive a single intravenous infusion of canakinumab (450 mg for body weight of 40-<60 kg, 600 mg for 60-80 kg, and 750 mg for >80 kg; n = 227) or placebo (n = 227). Main Outcomes and Measures: The primary outcome was survival without IMV from day 3 to day 29. Secondary outcomes were COVID-19-related mortality, measurements of biomarkers of systemic hyperinflammation, and safety evaluations. Results: Among 454 patients who were randomized (median age, 59 years; 187 women [41.2%]), 417 (91.9%) completed day 29 of the trial. Between days 3 and 29, 198 of 223 patients (88.8%) survived without requiring IMV in the canakinumab group and 191 of 223 (85.7%) in the placebo group, with a rate difference of 3.1% (95% CI, -3.1% to 9.3%) and an odds ratio of 1.39 (95% CI, 0.76 to 2.54; P = .29). COVID-19-related mortality occurred in 11 of 223 patients (4.9%) in the canakinumab group vs 16 of 222 (7.2%) in the placebo group, with a rate difference of -2.3% (95% CI, -6.7% to 2.2%) and an odds ratio of 0.67 (95% CI, 0.30 to 1.50). Serious adverse events were observed in 36 of 225 patients (16%) treated with canakinumab vs 46 of 223 (20.6%) who received placebo. Conclusions and Relevance: Among patients hospitalized with severe COVID-19, treatment with canakinumab, compared with placebo, did not significantly increase the likelihood of survival without IMV at day 29. Trial Registration: ClinicalTrials.gov Identifier: NCT04362813.


Subject(s)
Antibodies, Monoclonal, Humanized/therapeutic use , COVID-19 Drug Treatment , Interleukin-1beta/antagonists & inhibitors , Respiration, Artificial/statistics & numerical data , Aged , Antibodies, Monoclonal, Humanized/adverse effects , C-Reactive Protein/analysis , COVID-19/mortality , COVID-19/therapy , Combined Modality Therapy , Double-Blind Method , Female , Ferritins/blood , Fibrin Fibrinogen Degradation Products/analysis , Hospitalization , Humans , Kaplan-Meier Estimate , Male , Middle Aged , Survival Rate , Treatment Outcome
4.
Infect Immun ; 82(9): 3542-54, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24914224

ABSTRACT

Serratia marcescens is a Gram-negative bacterium that thrives in a wide variety of ambient niches and interacts with an ample range of hosts. As an opportunistic human pathogen, it has increased its clinical incidence in recent years, being responsible for life-threatening nosocomial infections. S. marcescens produces numerous exoproteins with toxic effects, including the ShlA pore-forming toxin, which has been catalogued as its most potent cytotoxin. However, the regulatory mechanisms that govern ShlA expression, as well as its action toward the host, have remained unclear. We have shown that S. marcescens elicits an autophagic response in host nonphagocytic cells. In this work, we determine that the expression of ShlA is responsible for the autophagic response that is promoted prior to bacterial internalization in epithelial cells. We show that a strain unable to express ShlA is no longer able to induce this autophagic mechanism, while heterologous expression of ShlA/ShlB suffices to confer on noninvasive Escherichia coli the capacity to trigger autophagy. We also demonstrate that shlBA harbors a binding motif for the RcsB regulator in its promoter region. RcsB-dependent control of shlBA constitutes a feed-forward regulatory mechanism that allows interplay with flagellar-biogenesis regulation. At the top of the circuit, activated RcsB downregulates expression of flagella by binding to the flhDC promoter region, preventing FliA-activated transcription of shlBA. Simultaneously, RcsB interaction within the shlBA promoter represses ShlA expression. This circuit offers multiple access points to fine-tune ShlA production. These findings also strengthen the case for an RcsB role in orchestrating the expression of Serratia virulence factors.


Subject(s)
Autophagy/genetics , Bacterial Proteins/genetics , Bacterial Toxins/genetics , Hemolysin Proteins/genetics , Serratia marcescens/genetics , Transcription, Genetic/genetics , Bacterial Proteins/metabolism , Bacterial Toxins/metabolism , Epithelial Cells/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Flagella/genetics , Flagella/metabolism , Hemolysin Proteins/metabolism , Promoter Regions, Genetic/genetics , Protein Binding/genetics , Serratia marcescens/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL