Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Cells ; 12(15)2023 08 06.
Article in English | MEDLINE | ID: mdl-37566090

ABSTRACT

Na/K-ATPase maintains transmembrane ionic gradients and acts as a signal transducer when bound to endogenous cardiotonic steroids. At subnanomolar concentrations, ouabain induces neuroprotection against calcium overload and apoptosis of neurons during excitotoxic stress. Here, the role of lipid rafts in interactions between Na/K-ATPase, sodium-calcium exchanger (NCX), and N-methy-D-aspartate receptors (NMDARs) was investigated. We analyzed 0.5-1-nanometer ouabain's effects on calcium responses and miniature post-synaptic current (mEPSCs) frequencies of cortical neurons during the action of NMDA in rat primary culture and brain slices. In both objects, ouabain attenuated NMDA-evoked calcium responses and prevented an increase in mEPSC frequency, while the cholesterol extraction by methyl-ß-cyclodextrin prevented the effects. The data support the conclusions that (i) ouabain-induced inhibition of NMDA-elicited calcium response involves both pre- and post-synapse, (ii) the presence of astrocytes in the tripartite synapse is not critical for the ouabain effects, which are found to be similar in cell cultures and brain slices, and (iii) ouabain action requires the integrity of cholesterol-rich membrane microdomains in which the colocalization and functional interaction of NMDAR-transferred calcium influx, calcium extrusion by NCX, and Na/K-ATPase modulation of the exchanger occur. This regulation of the molecules by cardiotonic steroids may influence synaptic transmission, prevent excitotoxic neuronal death, and interfere with the pharmacological actions of neurological medicines.


Subject(s)
Calcium , Ouabain , Rats , Animals , Ouabain/pharmacology , Calcium/metabolism , N-Methylaspartate/pharmacology , N-Methylaspartate/metabolism , Neurons/metabolism , Cholesterol/metabolism , Adenosine Triphosphatases/metabolism
2.
Int J Mol Sci ; 23(24)2022 Dec 19.
Article in English | MEDLINE | ID: mdl-36555818

ABSTRACT

The facilitated activity of N-methyl-D-aspartate receptors (NMDARs) in the central and peripheral nervous systems promotes neuropathic pain. Amitriptyline (ATL) and desipramine (DES) are tricyclic antidepressants (TCAs) whose anti-NMDAR properties contribute to their analgetic effects. At therapeutic concentrations <1 µM, these medicines inhibit NMDARs by enhancing their calcium-dependent desensitization (CDD). Li+, which suppresses the sodium−calcium exchanger (NCX) and enhances NMDAR CDD, also exhibits analgesia. Here, the effects of different [Li+]s on TCA inhibition of currents through native NMDARs in rat cortical neurons recorded by the patch-clamp technique were investigated. We demonstrated that the therapeutic [Li+]s of 0.5−1 mM cause an increase in ATL and DES IC50s of ~10 folds and ~4 folds, respectively, for the Ca2+-dependent NMDAR inhibition. The Ca2+-resistant component of NMDAR inhibition by TCAs, the open-channel block, was not affected by Li+. In agreement, clomipramine providing exclusively the NMDAR open-channel block is not sensitive to Li+. This Ca2+-dependent interplay between Li+, ATL, and DES could be determined by their competition for the same molecular target. Thus, submillimolar [Li+]s may weaken ATL and DES effects during combined therapy. The data suggest that Li+, ATL, and DES can enhance NMDAR CDD through NCX inhibition. This ability implies a drug−drug or ion−drug interaction when these medicines are used together therapeutically.


Subject(s)
Amitriptyline , Antidepressive Agents, Tricyclic , Rats , Animals , Antidepressive Agents, Tricyclic/pharmacology , Amitriptyline/pharmacology , Receptors, N-Methyl-D-Aspartate , Lithium/pharmacology , Calcium/metabolism , Desipramine/pharmacology , Calcium, Dietary
3.
Front Pharmacol ; 12: 815368, 2021.
Article in English | MEDLINE | ID: mdl-35237149

ABSTRACT

N-methyl-D-aspartate receptors (NMDARs) are an essential target for the analgetic action of tricyclic antidepressants (TCAs). Their therapeutic blood concentrations achieve 0.5-1.5 µM, which, however, are insufficient to cause in vitro the open-channel block known as the only effect of TCAs on NMDARs. Whereas structures of amitriptyline (ATL), desipramine (DES), and clomipramine (CLO) are rather similar these compounds manifest different therapeutic profiles and side effects. To study structure-activity relationships of DES and CLO on NMDARs, we measured IC50s as a function of extracellular calcium ([Ca2+]) and membrane voltage (Vm) of NMDAR currents recorded in cortical neurons. Here two components of TCA action on NMDARs are described, which could be characterized as the Ca2+-dependent inhibition and the open-channel block. DES demonstrated a profound Ca2+-dependent inhibition of NMDARs, while the CLO effect was weak. DES IC50 exhibited an e-fold change with a [Ca2+] shift of 0.59 mM, which is consistent with ATL. The Ca2+ dependence of NMDAR inhibition by DES disappeared in BAPTA loaded neurons, suggesting that Ca2+ acts from the inside. Since CLO differs from DES and ATL by the presence of Cl-atom in the structure, most likely, this is the atom which is responsible for the loss of pronounced [Ca2+] dependence. As for the NMDAR open-channel block, both DES and CLO were about 5-folds more potent than ATL due to their slow rates of dissociation either from open and closed states. DES demonstrated stronger Vm-dependence than CLO, suggesting a deeper location of the DES binding site within the ion pore. Because DES and CLO differ from ATL by the nitrogen-containing tricycle, presumably this moiety of the molecules determines their high-affinity binding with the NMDAR channel, while the aliphatic chain mono-methyl amino-group of DES allows a deep permeation in the channel. Thus, different structure-activity relationships of the Ca2+-dependent inhibition and Vm-dependent open-channel block of NMDARs by DES and CLO suggest that these processes are independent and most likely may represent an action on different molecular targets. The proposed model of TCA action on NMDARs predicts well the experimental values of IC50s at physiological [Ca2+] and within a wide range of Vms.

4.
Sci Rep ; 9(1): 19454, 2019 12 19.
Article in English | MEDLINE | ID: mdl-31857688

ABSTRACT

Although the tricyclic antidepressant amitriptyline (ATL) is widely used in the clinic, the mechanism underlying its high therapeutic efficacy against neuropathic pain remains unclear. NMDA receptors (NMDARs) represent a target for ATL and are involved in sensitization of neuropathic pain. Here we describe two actions of ATL on NMDARs: 1) enhancement of Ca2+-dependent desensitization and 2) trapping channel block. Inhibition of NMDARs by ATL was found to be dependent upon external Ca2+ concentration ([Ca2+]) in a voltage-independent manner, with an IC50 of 0.72 µM in 4 mM [Ca2+]. The ATL IC50 value increased exponentially with decreasing [Ca2+], with an e-fold change observed per 0.69 mM decrease in [Ca2+]. Loading neurons with BAPTA abolished Ca2+-dependent inhibition, suggesting that Ca2+ affects NMDARs from the cytosol. Since there is one known Ca2+-dependent process in gating of NMDARs, we conclude that ATL most likely promotes Ca2+-dependent desensitization. We also found ATL to be a trapping open-channel blocker of NMDARs with an IC50 of 220 µM at 0 mV. An e-fold change in ATL IC50 was observed to occur with a voltage shift of 50 mV in 0.25 mM [Ca2+]. Thus, we disclose here a robust dependence of ATL potency on extracellular [Ca2+], and demonstrate that ATL bound in the NMDAR pore can be trapped by closure of the channel.


Subject(s)
Amitriptyline/pharmacology , Antidepressive Agents, Tricyclic/pharmacology , Calcium/metabolism , Neurons/drug effects , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Amitriptyline/therapeutic use , Animals , Antidepressive Agents, Tricyclic/therapeutic use , Cells, Cultured , Cerebral Cortex/cytology , Chronic Pain/complications , Chronic Pain/diet therapy , Chronic Pain/psychology , Cytosol/drug effects , Cytosol/metabolism , Depression/drug therapy , Depression/etiology , Depression/psychology , Extracellular Space/drug effects , Extracellular Space/metabolism , Female , Humans , Inhibitory Concentration 50 , Ion Channel Gating/drug effects , Membrane Potentials/drug effects , Neuralgia/complications , Neuralgia/drug therapy , Neuralgia/psychology , Neurons/cytology , Neurons/metabolism , Patch-Clamp Techniques , Primary Cell Culture , Rats , Receptors, N-Methyl-D-Aspartate/metabolism
5.
J Mol Neurosci ; 64(2): 300-311, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29285738

ABSTRACT

Transient expression of different NMDA receptors (NMDARs) plays a role in development of the cerebellum. Whether similar processes undergo during neuronal differentiation in culture is not clearly understood. We studied NMDARs in cerebellar neurons in cultures of 7 and 21 days in vitro (DIV) using immunocytochemical and electrophysiological approaches. Whereas at 7 DIV, the vast majority of neurons were immunopositive for GluN2 subunits, further synaptoginesis was accompanied by the time-dependent loss of NMDARs. In contrast to GluN2B- and GluN2C-containing NMDARs, which at 7 DIV exhibited homogenous distribution in extrasynaptic regions, GluN2A-containing receptors were aggregated in spots both in cell bodies and dendrites. Double staining for GluN2A subunits and synaptophysin, a widely used marker for presynaptic terminals, revealed their co-localization in about 75% of dendrite GluN2A fluorescent spots, suggesting postsynaptic origin of GluN2A subunits. In agreement, diheteromeric GluN2A-containing NMDARs contributed to postsynaptic currents recorded in neurons throughout the timescale under study. Diheteromeric GluN2B-containing NMDARs escaped postsynaptic regions during differentiation. Finally, the developmental switch favored the expression of triheteromeric NMDARs assembled of 2 GluN1/1 GluN2B/1 GluN2C or GluN2D subunits in extrasynaptic regions. At 21 DIV, these receptors represented over 60% of the NMDAR population. Thus, cerebellar neurons in primary culture undergo transformations with respect to the expression of di- and triheteromeric NMDARs that should be taken into account when studying cellular aspects of their pharmacology and functions.


Subject(s)
Neurogenesis , Purkinje Cells/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Synapses/metabolism , Animals , Cells, Cultured , Membrane Potentials , Protein Subunits/genetics , Protein Subunits/metabolism , Purkinje Cells/cytology , Purkinje Cells/physiology , Rats , Rats, Wistar , Receptors, N-Methyl-D-Aspartate/genetics , Synapses/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...