Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Aerosp Med Hum Perform ; 94(9): 705-714, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37587636

ABSTRACT

BACKGROUND: While catastrophic spaceflight events resulting in crew loss have occurred, human spaceflight has never suffered an on-orbit fatality with survival of other crewmembers on board. Historical plans for management of an on-orbit fatality have included some consideration for forensic documentation and sample collection, human remains containment, and disposition of remains; however, such plans have not included granular detailing of crew or ground controller actions. The NASA Johnson Space Center Contingency Medical Operations Group, under authority from the Space and Occupational Medicine Branch, the Space Medicine Operations Division, and the Human Health and Performance Directorate, undertook the development of a comprehensive plan, including an integrated Mission Control Center response for flight control teams and Flight Surgeons for a single on-orbit crew fatality on the International Space Station (ISS) and subsequent events. Here we detail the operational considerations for a crew fatality should it occur during spaceflight onboard the ISS, including forensic and timeline constraints, behavioral health factors, and considerations for final disposition of decedent remains. Future considerations for differential survival and crewmember fatality outside of low-Earth orbit operations will additionally be discussed, including consideration of factors unique to planetary and surface operations and disposition limitations in exploration spaceflight. While the efforts detailed herein were developed within the constraints of the ISS concept of operations, future platforms may benefit from the procedural validation and product verifications steps described. Ultimately, any response to spaceflight fatality must preserve the goal of handling decedent remains and disposition with dignity, honor, and respect.Stepaniak PC, Blue RS, Gilmore S, Beven GE, Chough NG, Tsung A, McMonigal KA, Mazuchowski EL II, Bytheway JA, Lindgren KN, Barratt MR. Operational considerations for crew fatality on the International Space Station. Aerosp Med Hum Perform. 2023; 94(9):705-714.


Subject(s)
Aerospace Medicine , Occupational Medicine , Surgeons , Humans , Documentation
2.
Aerosp Med Hum Perform ; 94(5): 368-376, 2023 May 01.
Article in English | MEDLINE | ID: mdl-37069750

ABSTRACT

BACKGROUND: Maintenance and disposition of decedent remains during spaceflight require the isolation of biohazardous products of decomposition in microgravity and in the absence of refrigeration. Containment and isolation options would preferably offer sufficient time to enable crew and ground support teams to determine appropriate disposition of remains and even potentially return remains to the Earth. The pilot study described herein undertook an effort to develop a postmortem containment unit for the isolation and maintenance of decedent remains in a microgravity environment.METHODS: Commercial off-the-shelf containment units were modified to meet the needs of a microgravity spaceflight environment and to offer the best likelihood of successful containment and management of remains. A subsequent evaluation of modified containment unit performance was undertaken utilizing human cadavers, with measurement and analysis of volatile off-gassing over time followed by impact testing of the units containing cadaverous remains in a simulated spaceflight vehicle seat.RESULTS: Modifications were implemented without significant negative design impact. Failure was observed in one modified unit after 9 d and attributed to improper filter application. The remaining unit successfully contained remains beyond the intended endpoint of the study.DISCUSSION: These pilot efforts offer important insight into the development of effective postmortem containment options for future spaceflight. Further study is needed to ensure repeatability of the findings and to further characterize the failure modes of the modified units evaluated, the impact of microgravity conditions, and the identification of additional modifications that would improve remains disposition.Houser T, Lindgren KN, Mazuchowski EL II, Barratt MR, Haines DC, Jayakody M, Blue RS, Bytheway JA, Stepaniak PC. Remains containment considerations for death in low-Earth orbit. Aerosp Med Hum Perform. 2023; 94(5):368-376.


Subject(s)
Space Flight , Weightlessness , Humans , Pilot Projects , Weightlessness Simulation
3.
Aviat Space Environ Med ; 84(10): 1100-4, 2013 Oct.
Article in English | MEDLINE | ID: mdl-24261066

ABSTRACT

INTRODUCTION: To reduce excessive iodine consumption by astronauts, the National Aeronautics and Space Administration (NASA) has developed various methods of removing residual iodine after iodine-based water purification aboard spacecraft. The Low Iodine Residual System (LIRS) was developed as an iodine removal system for use aboard the space shuttle. This is a case report of an accidental, potentially toxic ingestion by astronauts aboard a space shuttle mission following exposure to contaminated water from LIRS filtration and the medical response operations that followed. CASE REPORT: Astronauts ingested significant levels of trialkylamines from water that had passed through gamma-irradiated, de-iodination resin in the LIRS hardware. Medical response operations included crew evaluations, consultations with toxicologists and systems experts, hardware testing, contaminant evaluation, and close crewmember follow-up. DISCUSSION: Despite the significant ingestion there were no adverse clinical symptoms in any of the exposed astronauts; however, the case highlights a simple pitfall in the classification of hardware that ultimately lead to a potentially harmful toxic ingestion among the crewmembers, and the real-time response of medical personnel to ensure crew safety.


Subject(s)
Amines/toxicity , Butylamines/toxicity , Drinking Water/chemistry , Iodine/analysis , Space Flight , Water Purification , Adult , Amines/analysis , Butylamines/analysis , Gamma Rays , Humans , Male , Propylamines/analysis , Propylamines/toxicity , Sterilization , Water Purification/instrumentation
4.
Aviat Space Environ Med ; 78(4 Suppl): A5-8, 2007 Apr.
Article in English | MEDLINE | ID: mdl-17511293

ABSTRACT

Although acute urinary retention (AUR) is not commonly thought of as a life-threatening condition, its presentation in orbit can lead to a number of medical complications that could compromise a space mission. We report on a middle-aged astronaut who developed urinary retention during two spaceflights. On the first mission of note, the astronaut initially took standard doses of promethazine and scopolamine before launch, and developed AUR immediately after entering orbit. For the first 3 d, the astronaut underwent intermittent catheterizations with a single balloon-tipped catheter. Due to the lack of iodine solution on board and the need for the astronaut to complete certain duties without interruption, the catheter was left in place for a total of 4 d. Although the ability to void returned after day 7, a bout of AUR reemerged on day 10, 1 d before landing. On return to Earth, a cystometrogram was unremarkable. During the astronaut's next mission, AUR again recurred for the first 24 h of microgravity exposure, and the astronaut was subsequently able to void spontaneously while in space. This report details the presentation of this astronaut, the precautions that were taken for space travel subsequent to the initial episode of AUR, and the possible reasons why space travel can predispose astronauts to urinary retention while in orbit. The four major causes of AUR--obstructive, pharmacologic, psychogenic, and neurogenic-are discussed, with an emphasis on how these may have played a role in this case.


Subject(s)
Aerospace Medicine , Astronauts , Space Flight , Urinary Retention/drug therapy , Weightlessness/adverse effects , Acute Disease , Adult , Humans , Male , Middle Aged , Promethazine/therapeutic use , Risk Factors , United States , Urinary Retention/etiology , Urinary Retention/therapy
5.
Aviat Space Environ Med ; 78(4 Suppl): A14-25, 2007 Apr.
Article in English | MEDLINE | ID: mdl-17511295

ABSTRACT

INTRODUCTION: While the physiologic effects of space travel are documented in healthy individuals, little is known about its impact on medically ill or injured persons. In this study, hemorrhagic shock in primates was used to model a potentially common pathophysiologic condition during exposure to gravitational forces simulating return from Earth orbit. This experiment did not model the effects of cardiovascular deconditioning that normally occur during spaceflight. METHODS: Using invasive hemodynamic monitoring, serial cardiovascular and laboratory parameters in baboons (Papio papio) were studied. Subjects were centrifuged at either a low +Gx (3.3 G maximum) or high +Gx (7.8 G maximum) acceleration reentry profile before and after being subjected to either class II (20% volume loss) or class IV (40% volume loss) hemorrhagic shock. RESULTS: Significant alterations in cardiovascular and laboratory parameters occurred during shock and exposure to high and low +Gx acceleration. Shock classification was the primary determinant of change in cardiovascular function. During the experimental protocol, 31 of 32 animals survived (97% survival). After a 1-wk post-protocol observation period, 28 of 32 subjects survived (88% survival). CONCLUSIONS: This preliminary study presents data that suggest that the emergent return of a medically compromised individual without resuscitation may be potentially survivable. However, medical stabilization with volume resuscitation, supplemental oxygen, and noninvasive monitoring would likely optimize clinical outcomes in the event of significant hemorrhagic shock states necessitating emergent deorbit.


Subject(s)
Aerospace Medicine , Cardiovascular System , Centrifugation/adverse effects , Computer Simulation , Hypergravity/adverse effects , Papio/physiology , Shock, Hemorrhagic/etiology , Acceleration/adverse effects , Animals , Male , Models, Animal , Risk Factors , Shock, Hemorrhagic/mortality
6.
Aviat Space Environ Med ; 74(12): 1285-91, 2003 Dec.
Article in English | MEDLINE | ID: mdl-14692474

ABSTRACT

Exposure to hydrazine and hydrazines' alkylated derivatives is an important occupational health issue, which will increase in significance as space applications increase. Despite their widespread usage as rocket fuels in manned and unmanned space and missile systems, serious exposures to hydrazines are rare. While a significant number of experimental studies were performed in the late 1950s through the mid-1960s, conflicting information exists concerning the most appropriate treatment for these exposures. A cross-sectional study evaluating the most common rocket fuels such as hydrazine; 1,1-dimethylhydrazine (UDMH); mono-methylhydrazine (MMH); and Aerozine-50 against the most commonly suggested therapies, such as pyridoxine, traditional antiseizure therapies, and arginine is needed to clarify the treatment implications for human exposure. Treatments that have been useful for hyperammonemic states, such as those for the six inherited urea cycle defects, have significant potential for the improvement of hydrazine exposure treatment.


Subject(s)
Aerospace Medicine , Hydrazines/poisoning , Occupational Exposure , Poisoning/therapy , Acute Disease , Central Nervous System/drug effects , Cross-Sectional Studies , Humans , Spacecraft
SELECTION OF CITATIONS
SEARCH DETAIL
...