Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Genome Res ; 2023 Nov 09.
Article in English | MEDLINE | ID: mdl-37945377

ABSTRACT

Mammalian mRNA and lncRNA exons are often small compared to introns. The exon definition model predicts that exons splice autonomously, dependent on proximal exon sequence features, explaining their delineation within large introns. This model has not been examined on a genome-wide scale, however, leaving open the question of how often mRNA and lncRNA exons are autonomous. It is also unknown how frequently such exons can arise by chance. Here, we directly assayed large fragments (500-1000 bp) of the human genome by exon trapping, which detects exons spliced into a heterologous transgene, here designed with a large intron context. We define the trapped exons as "autonomous." We obtained ∼1.25 million trapped exons, including most known mRNA and well-annotated lncRNA internal exons, demonstrating that human exons are predominantly autonomous. mRNA exons are trapped with the highest efficiency. Nearly a million of the trapped exons are unannotated, most located in intergenic regions and antisense to mRNA, with depletion from the forward strand of introns. These exons are not conserved, suggesting they are nonfunctional and arose from random mutations. They are nonetheless highly enriched with known splicing promoting sequence features that delineate known exons. Novel autonomous exons are more numerous than annotated lncRNA exons, and computational models also indicate they will occur with similar frequency in any randomly generated sequence. These results show that most human coding exons splice autonomously, and provide an explanation for the existence of many unconserved lncRNAs, as well as a new annotation and inclusion levels of spliceable loci in the human genome.

2.
Proc Natl Acad Sci U S A ; 114(18): 4739-4744, 2017 05 02.
Article in English | MEDLINE | ID: mdl-28416677

ABSTRACT

Pre-mRNA splicing is an essential step of eukaryotic gene expression that requires both high efficiency and high fidelity. Prp8 has long been considered the "master regulator" of the spliceosome, the molecular machine that executes pre-mRNA splicing. Cross-linking and structural studies place the RNaseH domain (RH) of Prp8 near the spliceosome's catalytic core and demonstrate that prp8 alleles that map to a 17-aa extension in RH stabilize it in one of two mutually exclusive structures, the biological relevance of which are unknown. We performed an extensive characterization of prp8 alleles that map to this extension and, using in vitro and in vivo reporter assays, show they fall into two functional classes associated with the two structures: those that promote error-prone/efficient splicing and those that promote hyperaccurate/inefficient splicing. Identification of global locations of endogenous splice-site activation by lariat sequencing confirms the fidelity effects seen in our reporter assays. Furthermore, we show that error-prone/efficient RH alleles suppress a prp2 mutant deficient at promoting the first catalytic step of splicing, whereas hyperaccurate/inefficient RH alleles exhibit synthetic sickness. Together our data indicate that prp8 RH alleles link splicing fidelity with catalytic efficiency by biasing the relative stabilities of distinct spliceosome conformations. We hypothesize that the spliceosome "toggles" between such error-prone/efficient and hyperaccurate/inefficient conformations during the splicing cycle to regulate splicing fidelity.


Subject(s)
Alleles , Mutation , RNA Splicing/physiology , RNA, Fungal , Ribonuclease H , Ribonucleoprotein, U4-U6 Small Nuclear , Ribonucleoprotein, U5 Small Nuclear , Saccharomyces cerevisiae Proteins , Protein Domains , RNA, Fungal/chemistry , RNA, Fungal/genetics , RNA, Fungal/metabolism , Ribonucleoprotein, U4-U6 Small Nuclear/chemistry , Ribonucleoprotein, U4-U6 Small Nuclear/genetics , Ribonucleoprotein, U4-U6 Small Nuclear/metabolism , Ribonucleoprotein, U5 Small Nuclear/chemistry , Ribonucleoprotein, U5 Small Nuclear/genetics , Ribonucleoprotein, U5 Small Nuclear/metabolism , Saccharomyces cerevisiae/chemistry , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism
3.
Nucleic Acids Res ; 43(17): 8488-501, 2015 Sep 30.
Article in English | MEDLINE | ID: mdl-26261211

ABSTRACT

Alternative splicing is an important and ancient feature of eukaryotic gene structure, the existence of which has likely facilitated eukaryotic proteome expansions. Here, we have used intron lariat sequencing to generate a comprehensive profile of splicing events in Schizosaccharomyces pombe, amongst the simplest organisms that possess mammalian-like splice site degeneracy. We reveal an unprecedented level of alternative splicing, including alternative splice site selection for over half of all annotated introns, hundreds of novel exon-skipping events, and thousands of novel introns. Moreover, the frequency of these events is far higher than previous estimates, with alternative splice sites on average activated at ∼3% the rate of canonical sites. Although a subset of alternative sites are conserved in related species, implying functional potential, the majority are not detectably conserved. Interestingly, the rate of aberrant splicing is inversely related to expression level, with lowly expressed genes more prone to erroneous splicing. Although we validate many events with RNAseq, the proportion of alternative splicing discovered with lariat sequencing is far greater, a difference we attribute to preferential decay of aberrantly spliced transcripts. Together, these data suggest the spliceosome possesses far lower fidelity than previously appreciated, highlighting the potential contributions of alternative splicing in generating novel gene structures.


Subject(s)
Alternative Splicing , Gene Expression Regulation, Fungal , Schizosaccharomyces/genetics , Introns , RNA Splice Sites , Sequence Analysis, RNA
4.
PLoS Genet ; 9(8): e1003673, 2013.
Article in English | MEDLINE | ID: mdl-23990792

ABSTRACT

Analogously to chromosome cohesion in eukaryotes, newly replicated DNA in E. coli is held together by inter-sister linkages before partitioning into daughter nucleoids. In both cases, initial joining is apparently mediated by DNA catenation, in which replication-induced positive supercoils diffuse behind the fork, causing newly replicated duplexes to twist around each other. Type-II topoisomerase-catalyzed sister separation is delayed by the well-characterized cohesin complex in eukaryotes, but cohesion control in E. coli is not currently understood. We report that the abundant fork tracking protein SeqA is a strong positive regulator of cohesion, and is responsible for markedly prolonged cohesion observed at "snap" loci. Epistasis analysis suggests that SeqA stabilizes cohesion by antagonizing Topo IV-mediated sister resolution, and possibly also by a direct bridging mechanism. We show that variable cohesion observed along the E. coli chromosome is caused by differential SeqA binding, with oriC and snap loci binding disproportionally more SeqA. We propose that SeqA binding results in loose inter-duplex junctions that are resistant to Topo IV cleavage. Lastly, reducing cohesion by genetic manipulation of Topo IV or SeqA resulted in dramatically slowed sister locus separation and poor nucleoid partitioning, indicating that cohesion has a prominent role in chromosome segregation.


Subject(s)
Bacterial Outer Membrane Proteins/genetics , Chromosomes/genetics , DNA Replication/genetics , DNA Topoisomerase IV/genetics , DNA-Binding Proteins/genetics , Escherichia coli Proteins/genetics , Bacterial Outer Membrane Proteins/metabolism , Chromosome Segregation , DNA Topoisomerase IV/metabolism , DNA Topoisomerases, Type II/genetics , DNA-Binding Proteins/metabolism , Escherichia coli/genetics , Escherichia coli Proteins/metabolism , Origin Recognition Complex/genetics , Origin Recognition Complex/metabolism , Protein Binding , Sister Chromatid Exchange/genetics
5.
PLoS Genet ; 8(3): e1002530, 2012.
Article in English | MEDLINE | ID: mdl-22479188

ABSTRACT

Here we present the development and implementation of a genome-wide reverse genetic screen in the budding yeast, Saccharomyces cerevisiae, that couples high-throughput strain growth, robotic RNA isolation and cDNA synthesis, and quantitative PCR to allow for a robust determination of the level of nearly any cellular RNA in the background of ~5,500 different mutants. As an initial test of this approach, we sought to identify the full complement of factors that impact pre-mRNA splicing. Increasing lines of evidence suggest a relationship between pre-mRNA splicing and other cellular pathways including chromatin remodeling, transcription, and 3' end processing, yet in many cases the specific proteins responsible for functionally connecting these pathways remain unclear. Moreover, it is unclear whether all pathways that are coupled to splicing have been identified. As expected, our approach sensitively detects pre-mRNA accumulation in the vast majority of strains containing mutations in known splicing factors. Remarkably, however, several additional candidates were found to cause increases in pre-mRNA levels similar to that seen for canonical splicing mutants, none of which had previously been implicated in the splicing pathway. Instead, several of these factors have been previously implicated to play roles in chromatin remodeling, 3' end processing, and other novel categories. Further analysis of these factors using splicing-sensitive microarrays confirms that deletion of Bdf1, a factor that links transcription initiation and chromatin remodeling, leads to a global splicing defect, providing evidence for a novel connection between pre-mRNA splicing and this component of the SWR1 complex. By contrast, mutations in 3' end processing factors such as Cft2 and Yth1 also result in pre-mRNA splicing defects, although only for a subset of transcripts, suggesting that spliceosome assembly in S. cerevisiae may more closely resemble mammalian models of exon-definition. More broadly, our work demonstrates the capacity of this approach to identify novel regulators of various cellular RNAs.


Subject(s)
High-Throughput Screening Assays/methods , Oligonucleotide Array Sequence Analysis/methods , RNA Precursors , RNA Splicing/genetics , Saccharomyces cerevisiae , Chromatin Assembly and Disassembly/genetics , Gene Expression Regulation, Fungal , Mutation , RNA 3' End Processing/genetics , Saccharomyces cerevisiae/genetics , Transcription, Genetic
6.
Mol Microbiol ; 74(2): 467-79, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19737351

ABSTRACT

Replication initiation is a key event in the cell cycle of all organisms and oriC, the replication origin in Escherichia coli, serves as the prototypical model for this process. The minimal sequence required for oriC function was originally determined entirely from plasmid studies using cloned origin fragments, which have previously been shown to differ dramatically in sequence requirement from the chromosome. Using an in vivo recombineering strategy to exchange wt oriCs for mutated ones regardless of whether they are functional origins or not, we have determined the minimal origin sequence that will support chromosome replication. Nearly the entire right half of oriC could be deleted without loss of origin function, demanding a reassessment of existing models for initiation. Cells carrying the new DnaA box-depleted 163 bp minimal oriC exhibited little or no loss of fitness under slow-growth conditions, but were sensitive to rich medium, suggesting that the dense packing of initiator binding sites that is a hallmark of prokaryotic origins, has likely evolved to support the increased demands of multi-forked replication.


Subject(s)
DNA Replication , Escherichia coli/genetics , Origin Recognition Complex/genetics , Replication Origin , DNA, Bacterial/biosynthesis , Escherichia coli/growth & development , Mutagenesis , Sequence Deletion
SELECTION OF CITATIONS
SEARCH DETAIL
...