Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Biomater Sci ; 12(10): 2689-2704, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38597367

ABSTRACT

Nano-dispersed cerium dioxide is promising for use in medicine due to its unique physicochemical properties, including low toxicity, the safety of in vivo usage, active participation in different redox processes occurring in living cells, and its regenerative potential, manifested in the ability of CeO2 to participate repeatedly in redox reactions. In this work, we examined the biological activity of cerium dioxide nanoparticles (CeO2 NPs) synthesized by precipitation in mixed water/alcohol solutions at a constant pH of 9. This synthesis method allowed controlling the size and Ce3+/Ce4+ proportion on the surface of NPs, changing the synthesis conditions and obtaining highly stable suspensions of "naked" CeO2 NPs. Changes in the surface properties upon contact of CeO2 NPs with protein-rich media, e.g., bovine serum albumin and DMEM cell culture medium supplemented with 10% fetal bovine serum, the characteristics of nanoparticle uptake by mouse aortic endothelial cells and the antioxidant activity of the nanoparticles of different sizes were investigated by various state-of-the-art analytical methods.


Subject(s)
Cerium , Nanoparticles , Particle Size , Surface Properties , Cerium/chemistry , Cerium/pharmacology , Animals , Mice , Nanoparticles/chemistry , Antioxidants/chemistry , Antioxidants/pharmacology , Endothelial Cells/drug effects , Serum Albumin, Bovine/chemistry , Cattle
2.
Cytometry A ; 105(4): 252-265, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38038631

ABSTRACT

Mesenchymal stem cells (MSCs) being injected into the body can stimulate or decelerate carcinogenesis. Here, the direction of influence of human placenta-derived MSCs (P-MSCs) on the Lewis lung carcinoma (LLC) tumor development and metastatic potential is investigated in C57BL/6 mice depending on the injection method. After intramuscular co-inoculation of LLC and P-MSCs (LLC + P-MSCs), the growth of primary tumor and angiogenesis are slowed down compared to the control LLC on the 15th day. This is explained by the fact of a decrease in the secretion of proangiogenic factors during in vitro co-cultivation of an equal amount of LLC and P-MSCs. When P-MSCs are intravenously (i.v.) injected in the mice with developing LLC (LLC + P-MSCs(i.v.)), the tumor growth and angiogenesis are stimulated on the 15th day. A highly activated secretion of proangiogenic factors by P-MSCs in a similar in vitro model can explain this. In both the models compared to the control on the 23rd day, there is no significant difference in the tumor growth, while angiogenesis remains correspondingly decelerated or stimulated. However, in both the models, the total volume and number of lung metastases constantly increase compared to the control: it is mainly due to small-size metastases for LLC + P-MSCs(i.v.) and larger ones for LLC + P-MSCs. The increase in the rate of LLC cell dissemination after the injection of P-MSCs is explained by the disordered polyploidy and chromosomal instability, leading to an increase in migration and invasion of cancer cells. After LLC + P-MSCs co-inoculation, the tumor cell karyotype has the most complex and heterogeneous chromosomal structure. These findings indicate a bidirectional effect of P-MSCs on the growth of LLC in the early periods after injection, depending on the injection method, and, correspondingly, the number of contacting cells. However, regardless of the injection method, P-MSCs are shown to increase LLC aggressiveness related to cancer-associated angiogenesis and metastasis activation in the long term.


Subject(s)
Carcinoma, Lewis Lung , Lung Neoplasms , Mesenchymal Stem Cells , Humans , Mice , Animals , Carcinoma, Lewis Lung/pathology , Mice, Inbred C57BL , Lung Neoplasms/pathology
3.
Alzheimers Res Ther ; 14(1): 84, 2022 06 18.
Article in English | MEDLINE | ID: mdl-35717405

ABSTRACT

BACKGROUND: Low-intensity light can decelerate neurodegenerative disease progression and reduce amyloid ß (Aß) levels in the cortex, though the cellular and molecular mechanisms by which photobiomodulation (PBM) protects against neurodegeneration are still in the early stages. Microglia cells play a key role in the pathology of Alzheimer's disease by causing chronic inflammation. We present new results concerning the PBM of both oxidative stress and microglia metabolism associated with the activation of metabolic processes by 808 nm near-infrared light. METHODS: The studies were carried out using healthy male mice to obtain the microglial cell suspension from the hippocampus. Oligomeric ß-amyloid (1-42) was prepared and used to treat microglia cells. Light irradiation of cells was performed using diode lasers emitting at 808 nm (30 mW/cm2 for 5 min, resulting in a dose of 10 J/cm2). Mitochondrial membrane potential, ROS level studies, cell viability, apoptosis, and necrosis assays were performed using epifluorescence microscopy. Phagocytosis, nitric oxide and H2O2 production, arginase, and glucose 6-phosphate dehydrogenase activities were measured using standard assays. Cytokines, glucose, lactate, and ATP were measurements with ELISA. As our data were normally distributed, two-way ANOVA test was used. RESULTS: The light induces a metabolic shift from glycolysis to mitochondrial activity in pro-inflammatory microglia affected by oligomeric Aß. Thereby, the level of anti-inflammatory microglia increases. This process is accompanied by a decrease in pro-inflammatory cytokines and an activation of phagocytosis. Light exposure decreases the Aß-induced activity of glucose-6-phosphate dehydrogenase, an enzyme that regulates the rate of the pentose phosphate pathway, which activates nicotinamide adenine dinucleotide phosphate oxidases to further produce ROS. During co-cultivation of neurons with microglia, light prevents the death of neurons, which is caused by ROS produced by Aß-altered microglia. CONCLUSIONS: These original data clarify reasons for how PBM protects against neurodegeneration and support the use of light for therapeutic research in the treatment of Alzheimer's disease.


Subject(s)
Alzheimer Disease , Neurodegenerative Diseases , Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Animals , Cytokines/metabolism , Glucose/metabolism , Humans , Hydrogen Peroxide , Male , Mice , Microglia/metabolism , Neurodegenerative Diseases/metabolism , Neurons/metabolism , Phototherapy , Reactive Oxygen Species/metabolism
4.
J Photochem Photobiol B ; 227: 112388, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35074677

ABSTRACT

Irradiation with red or near-infrared (NIR) light in low level light therapy (LLLT) is found to stimulate cellular processes and bioenergetics, resulting in enhanced wound healing, pain control, neurodegenerative diseases treatment, etc. During light irradiation of tissues and organs, different cells are affected, though the connection between photostimulation of cells and their environmental conditions remains poorly understood. In this report, red/NIR light-stimulated angiogenesis is investigated using endothelial cells in vitro, with a focus on the capillary-like structure (CLS) formation and the respective biochemical processes in cells under conditions proximate to a healthy or malignant environment, which strongly defines angiogenesis. To model environmental conditions for endotheliocytes in vitro, the cell culture environment was supplemented by an augmented conditioned medium from macrophages or cancer cells. The biochemical processes in endothelial cell cultures were investigated with and without irradiation by red (650 nm) and near-infrared (808 nm) laser diodes and under normoxia or hypoxia conditions. A light-stimulated angiogenesis has been found, with a more efficient stimulation by 650 nm light compared to 808 nm light. It was shown that the irradiation with light promoted extracellular Ca2+ influx, fostered cell cycle progression, proliferation and NO generation in endothelial cells, and caused an increase in vascular endothelial growth factor (VEGF) production by endothelial cells and M2 macrophages under hypoxia conditions. The activation of VEGF production by macrophages was found to be associated with an increase in the number of M2 macrophages after light irradiation under hypoxia conditions. Thus, a new pathway of an activation of the endothelial cell metabolism, which is related with the extracellular Ca2+ influx after light irradiation, has been revealed. STATEMENT OF SIGNIFICANCE: Red/NIR light-stimulated angiogenesis has been studied using endothelial cells in vitro, with focus on CLS formation and the respective biochemical processes in cell models proximate to a healthy or malignant environment. A light-stimulated angiogenesis has been found, stimulated via extracellular Ca2+ influx, cell cycle progression, proliferation and NO generation, VEGF production increase by endothelial cells under hypoxia conditions.


Subject(s)
Endothelial Cells , Vascular Endothelial Growth Factor A , Cells, Cultured , Endothelial Cells/metabolism , Humans , Infrared Rays , Macrophages/metabolism , Neovascularization, Pathologic/metabolism , Neovascularization, Physiologic , Vascular Endothelial Growth Factor A/metabolism
5.
Am J Physiol Gastrointest Liver Physiol ; 322(1): G142-G153, 2022 01 01.
Article in English | MEDLINE | ID: mdl-34851733

ABSTRACT

Hepatocellular carcinoma (HCC) is the most common primary liver cancer, which is not sensitive to radiotherapy and chemotherapy and very often experiences postoperative relapse. In this regard, effective screening of liver cancer is considered as the most important and urgent task. The aim of our study was to determine whether N-methyl-D-aspartate receptor (NMDAR) and, in particular, its subunits, can serve as biomarkers to distinguish the precancerous liver at early stages of liver fibrosis. We assessed the development of HCC after 10, 15, and 22 wk using a HCC rat model. The expression of NMDAR subunits was monitored at different stages of HCC by means of immunohistochemistry combined with epifluorescence microscopy imaging, Western blotting, and direct bisulfite sequencing. NMDAR subunits were not found in healthy liver tissues. In contrast, NMDAR subunits, in particular NR1 and NR2B, appeared at the stage of severe liver fibrosis (precancerous liver disease) in rats and were expressed during the development of HCC in rats and mice. Using the direct bisulfite sequencing, we detected that increased expression of NMDAR directly correlated with the demethylation of CpG islands in the promoter region of genes encoding receptor subunits. The obtained results confirmed that NMDAR subunits can serve as new biomarkers of precancerous liver disease, severe fibrosis, and its progression towards HCC.NEW & NOTEWORTHY We have shown NMDAR expression in cell transformation process at early stages of cancer, specifically HCC. The aim of our study was to define the disease stages from precancerous liver disease towards liver cancer progression when NMDAR subunits were expressed/detected. A fibrosis/HCC rat model, immunohistochemistry combined with epifluorescence microscopy imaging, Western blotting was used. The dynamics of appearance of NMDAR subunits, their expression and methylation status during the development of HCC were shown and discussed.


Subject(s)
Carcinoma, Hepatocellular/metabolism , Liver Neoplasms/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Signal Transduction/physiology , Animals , Carcinoma, Hepatocellular/genetics , Liver Neoplasms/genetics , RNA, Messenger/metabolism , Rats , Rodentia/genetics , Rodentia/metabolism
6.
Photochem Photobiol ; 98(2): 484-497, 2022 03.
Article in English | MEDLINE | ID: mdl-34569637

ABSTRACT

Low-level light therapy (LLLT) is emerging as a promising therapeutic approach to modulate the biochemical and molecular processes within living cells. LLLT is known to produce local and systemic effects; therefore, immune cells in local tissues or in the circulation are affected by light. However, this specific effect remains weakly explored. In this study, the effect of red (650 nm) and NIR (808 nm) light on phagocytosis (respiratory burst), cytokine expression, mitochondrial activity, ROS generation, Ca2+ influx and membrane depolarization in macrophages in vitro is investigated. Both the phagocytic capacity and adhesion of macrophages strongly (~2.5 times) increased in the first hours after exposure to light in a dose-dependent manner. The light-evoked upregulation of phagocytosis is found to be less efficient than the maximal pharmacologically induced enhancement of ~3.2 times. Also, red/NIR light reduces the production of pro-inflammatory cytokines and activates the secretion of anti-inflammatory cytokines by several times in activated macrophages. At the same time, the viability shows a biphasic dose response: it increases after irradiation with lower doses (0.3-1 J cm-2 ) and decreases after treatment with higher doses (18-30 J cm-2 ), which is apparently associated with the upregulation of ROS generation, followed by an increase in the mitochondrial activity.


Subject(s)
Calcium/metabolism , Cytokines , Low-Level Light Therapy , Cytokines/metabolism , Macrophages/metabolism , Mitochondria/metabolism , Phagocytosis , Reactive Oxygen Species/metabolism
7.
J Photochem Photobiol B ; 214: 112088, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33278762

ABSTRACT

Low level light therapy uses light of specific wavelengths in red and near-infrared spectral range to treat various pathological conditions. This light is able to modulate biochemical cascade reactions in cells that can have important health implications. In this study, the effect of low intensity light at 650, 808 and 1064 nm on neurons and two types of cancer cells (neuroblastoma and HeLa) is reported, with focus on the photoinduced change of intracellular level of Ca2+ ions and corresponding signaling pathways. The obtained results show that 650 and 808 nm light promotes intracellular Ca2+ elevation regardless of cell type, but with different dynamics due to the specificities of Ca2+ regulation in neurons and cancer cells. Two origins responsible for Ca2+ elevation are determined to be: influx of exogenous Ca2+ ions into cells and Ca2+ release from endoplasmic reticulum. Our investigation of the related cellular processes shows that light-induced membrane depolarization is distinctly involved in the mechanism of Ca2+ influx. Ca2+ release from endoplasmic reticulum activated by reactive oxygen species generation is considered as a possible light-dependent signaling pathway. In contrast to the irradiation with 650 and 808 nm light, no effects are observed under 1064 nm irradiation. We believe that the obtained insights are of high significance and can be useful for the development of drug-free phototherapy.


Subject(s)
Calcium Signaling/radiation effects , Calcium/radiation effects , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum/radiation effects , Calcium/physiology , Cell Membrane/metabolism , Electrophysiology , Fluorescent Dyes/chemistry , HeLa Cells , Humans , Infrared Rays , Low-Level Light Therapy , Neurons/radiation effects , Optical Imaging , Reactive Oxygen Species/radiation effects
8.
J Cell Physiol ; 234(9): 15989-16002, 2019 Sep.
Article in English | MEDLINE | ID: mdl-30741423

ABSTRACT

Red and near-infrared (NIR) light effect on Ca2+ ions flux through the influence on N-methyl-D-aspartate receptors (NMDARs) and their functioning in HeLa cells was studied in vitro. Cells were irradiated by 650 and 808 nm laser light at different power densities and doses and the obtained effect was compared with that caused by the pharmacological agents. The laser light was found to elevate Ca2+ influx into cell cytoplasm in a dose-dependent manner without changes of the NMDAR functioning. Furthermore, the light of both wavelengths demonstrated the ability to elevate Ca2+ influx under the pharmacological blockade of NMDARs and also might partially abolish the blockade enhancing Ca2+ influx after selective stimulation of the receptors with NMDA. Simultaneously, the light at moderate doses demonstrated a photobiostimulating effect on cells. Based on our experiments and data reported in the literature, we suggest that the low-power visible and NIR light can instigate a cell membrane depolarization via nonthermal activation, resulting in the fast induction of Ca2+ influx into cells. The obtained results also demonstrate that NIR light can be used for nonthermal and nonpharmacological stimulation of NMDARs in cancer cells.

9.
Cytometry A ; 95(1): 24-33, 2019 01.
Article in English | MEDLINE | ID: mdl-30240134

ABSTRACT

This study is aimed to reveal morphological and functional changes in multipotent mesenchymal stromal cells (MSCs) isolated from the rat bone marrow after: (i) activation of Toll-like receptors (TLRs) with teichoic acid (TA), (ii) impact on epidermal growth factor (EGF) receptors with activator EGF or inhibitor Herceptin, and (iii) treatment with DNA intercalator Cisplatin. According to our results, TA and EGF cause an increase in the synthesis of glycosaminoglycans, c-Myc content, and protein in the MSC cytoplasm. It was observed that the cell population in G0 phase decreased and the cell population in G1 phase increased, when compared with control. At the same time, the cell population with a higher nuclear-cytoplasmic ratio (NCR) in S and G2 phases also increased. This indicates the manifestation of the MSC mesenchymal phenotype, exhibiting indirect metabolic signs of the regenerative potential increase. In other experiments, Herceptin was shown to suppress only the stemness signs of MSCs, while Cisplatin seriously affected cell viability in general, reducing synthetic and proliferative activities and causing cell morphology disturbances. © 2018 International Society for Advancement of Cytometry.


Subject(s)
Cisplatin/pharmacology , Epidermal Growth Factor/pharmacology , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Animals , Bone Marrow Cells/chemistry , Bone Marrow Cells/cytology , Bone Marrow Cells/metabolism , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Cells, Cultured , ErbB Receptors/agonists , ErbB Receptors/antagonists & inhibitors , Flow Cytometry , Glycogen/metabolism , Glycosaminoglycans/biosynthesis , Glycosaminoglycans/metabolism , Humans , Intercalating Agents/pharmacology , Male , Mesenchymal Stem Cells/chemistry , Proto-Oncogene Proteins c-myc/metabolism , Rats , Teichoic Acids/pharmacology , Toll-Like Receptors/metabolism , Trastuzumab/pharmacology
10.
Anticancer Agents Med Chem ; 18(10): 1495-1504, 2018.
Article in English | MEDLINE | ID: mdl-29532761

ABSTRACT

BACKGROUND: One of the most promising strategies to develop multi-targeted anticancer therapeutics is to introduce to the structure of a potential drug two or more pharmacophores (functional groups or structural fragments), which have antiproliferative, proapoptotic or antimetastatic properties acting via different mechanisms. OBJECTIVE: To design, synthesize and perform screening of a novel hybrid anticancer compound. METHOD: A novel hybrid compound 4-[(E)-2-phenylethenesulfonamido]-N-hydroxybutanamide, combining butanehydroxamate and styrenesulfonamide moieties, was designed, synthesized and investigated as a potent antimetastatic and antiproliferative agent. The structure and purity of the synthesized compound were confirmed by 1H NMR, 13C NMR, LC/MS spectroscopy and elemental analysis. The compound was screened for the anticancer activity in vitro against HeLa and in vivo against Lewis lung carcinoma tumor, using an antitumor metalloenzyme inhibitor GM6001 (Ilomastat, Galardin) and Pifithrin-µ as control anticancer agents. RESULTS: It was found that the application of our compound resulted in a high fraction of apoptotic cells in the cell population, along with disruption in the cell cycle profile manifested as arrest of proliferative phases. Furthermore, changes of the morphological properties (i.e., an enhancement of adhesive properties and reduction of the nuclear-to-cytoplasm ratio) were found. The in vivo screening revealed that the compound significantly inhibited the metastasizing process that was manifested by a reduction in the number and volume of metastases. CONCLUSIONS: The obtained results demonstrate that our compound can serve as a base for further structure optimization in order to design new highly-effective antimetastatic and antitumor agents.


Subject(s)
Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Cell Cycle/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Design , Drug Evaluation, Preclinical , Drug Screening Assays, Antitumor , Flow Cytometry , HeLa Cells , Humans , Microscopy, Fluorescence , Molecular Structure , Structure-Activity Relationship
11.
Euroasian J Hepatogastroenterol ; 8(2): 148-160, 2018.
Article in English | MEDLINE | ID: mdl-30828557

ABSTRACT

INTRODUCTION: Nonsteroidal anti-inflammatory drugs (NSAIDs), one of the most commonly used medications worldwide, are frequently associated with gastrointestinal adverse events. Primary care physicians often face the challenge of achieving adequate pain relief with NSAIDs, while keeping their adverse events to a minimum. This is especially true when long-term use of NSAIDs is required such as in patients with osteoarthritis and rheumatoid arthritis. To help primary care physicians deal with such challenges more effectively, a panel of expert gastroenterologists came together with the aim of developing practice recommendations. METHODS: A modified 'Delphi' process was used to reach consensus and develop practice recommendations. Twelve gastroenterologists from nine countries provided their expert inputs to formulate the recommendations. These recommendations were carefully developed taking into account existing literature, current practices, and expert opinion of the panelists. RESULTS: The expert panel developed a total of fifteen practice recommendations. Following are the key recommendations: NSAIDs should be prescribed only when necessary; before prescribing NSAIDs, associated modifiable and non-modifiable risk factors should be considered; H. pylori infection should be considered and treated before initiating NSAIDs; patients should be properly educated regarding NSAIDs use; patients who need to be on long-term NSAIDs should be prescribed a gastroprotective agent, preferably a proton pump inhibitor and these patients should be closely monitored for any untoward adverse events. CONCLUSION/CLINICAL SIGNIFICANCE: These practice recommendations will serve as an important tool for primary care physicians and will guide them in making appropriate therapeutic choices for their patients.How to cite this article: Hunt R, Lazebnik LB, Marakhouski YC, Manuc M, Ramesh GN, Aye KS, Bordin DS, Bakulina NV, Iskakov BS, Khamraev AA, Stepanov YM, Ally R, Garg A. International Consensus on Guiding Recommendations for Management of Patients with Nonsteroidal Anti-inflammatory Drugs Induced Gastropathy-ICON-G. Euroasian J Hepatogastroenterol, 2018;8(2):148-160.

SELECTION OF CITATIONS
SEARCH DETAIL
...