Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 67
Filter
1.
bioRxiv ; 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-39026844

ABSTRACT

Schwann cells (SCs) transition into a repair phenotype after peripheral nerve injury, which is crucial for supporting axon regeneration. However, the early SC injury response preceding the repair state remains poorly understood. Here, we demonstrate that Sarm1, a key regulator of axon degeneration, is expressed in SCs and has a critical role in the early SC injury response. Leveraging the fact that Sarm1 deletion impairs the SC transition to the repair state, we used single-nucleus RNA sequencing to compare the transcriptional responses of wild-type and Sarm1 knockout SCs 24 hours after nerve injury. Remarkably, Sarm1-deficient SCs, unlike wild-type SCs, showed increased expression of genes involved in oxidative phosphorylation and the TCA cycle. These findings were functionally validated, revealing that Sarm1 knockout SCs displayed increased mitochondrial respiration in response to injury. Intriguingly, Sarm1 knockout SCs also exhibited enhanced axon protection compared to wild-type SCs in an in vitro model of axon degeneration. We propose that Sarm1 gates the transition of SCs from a protective, oxidative phosphorylation-dependent state (which we term Protection Associated Schwann Cells or PASCs) to a glycolytic, pro-regenerative repair phenotype after injury. Our findings challenge the prevailing view of Sarm1 as an exclusively axon-autonomous regulator of degeneration and reveal a paradigm shift in understanding the role of Sarm1 in the SC injury response, with broad implications for the treatment of peripheral neuropathies and neurodegenerative diseases.

2.
Virol J ; 21(1): 82, 2024 04 09.
Article in English | MEDLINE | ID: mdl-38589848

ABSTRACT

Influenza and SARS-CoV-2 are two major respiratory pathogens that cocirculate in humans and cause serious illness with the potential to exacerbate disease in the event of co-infection. To develop a bivalent vaccine, capable of protecting against both infections, we inserted the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein into hemagglutinin (HA) molecule or into the open reading frame of the truncated nonstructural protein 1 (NS1) of live attenuated influenza vaccine (LAIV) virus and assessed phenotypic characteristics of the rescued LAIV-RBD viruses, as well as their immunogenicity in mouse and Syrian hamster animal models. A panel of 9 recombinant LAIV-RBD viruses was rescued using the A/Leningrad/17 backbone. Notably, only two variants with RBD insertions into the HA molecule could express sufficient quantities of RBD protein in infected MDCK cells. Intranasal immunization of mice induced high levels of anti-influenza antibody responses in all chimeric LAIV-RBD viruses, which was comparable to the LAIV virus vector. The RBD-specific antibody responses were most pronounced in the variant expressing RBD194 fragment as a chimeric HA protein. This candidate was further tested in Syrian hamsters and was shown to be immunogenic and capable of protecting animals against both infections.


Subject(s)
COVID-19 , Influenza Vaccines , Influenza, Human , Spike Glycoprotein, Coronavirus , Humans , Animals , Mice , Influenza Vaccines/genetics , SARS-CoV-2/genetics , COVID-19 Vaccines , Vaccines, Combined , Antibodies, Viral , Hemagglutinins
3.
Vaccines (Basel) ; 12(1)2024 Jan 18.
Article in English | MEDLINE | ID: mdl-38250908

ABSTRACT

BACKGROUND: Influenza viruses continue to cause a significant social and economic burden globally. Vaccination is recognized as the most effective measure to control influenza. Live attenuated influenza vaccines (LAIVs) are an effective means of preventing influenza, especially among children. A reverse genetics (RG) system is required to rapidly update the antigenic composition of vaccines, as well as to design LAIVs with a broader spectrum of protection. Such a system has been developed for the Russian LAIVs only for type A strains, but not for influenza B viruses (IBV). METHODS: All genes of the B/USSR/60/69 master donor virus (B60) were cloned into RG plasmids, and the engineered B60, as well as a panel of IBV LAIV reassortants were rescued from plasmid DNAs encoding all viral genes. The engineered viruses were evaluated in vitro and in a mouse model. RESULTS: The B60 RG system was successfully developed, which made it possible to rescue LAIV reassortants with the desired antigenic composition, including hybrid strains with hemagglutinin and neuraminidase genes belonging to the viruses from different IBV lineages. The LAIV candidate carrying the HA of the B/Victoria-lineage virus and NA from the B/Yamagata-lineage virus demonstrated optimal characteristics in terms of safety, immunogenicity and cross-protection, prompting its further assessment as a broadly protective component of trivalent LAIV. CONCLUSIONS: The new RG system for B60 MDV allowed the rapid generation of type B LAIV reassortants with desired genome compositions. The generation of hybrid LAIV reassortants with HA and NA genes belonging to the opposite IBV lineages is a promising approach for the development of IBV vaccines with broad cross-protection.

4.
Int J Mol Sci ; 24(24)2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38139214

ABSTRACT

Influenza virus strain A/South Africa/3626/2013 (H1N1)pdm09 (SA-WT) is a non-mouse-adapted model strain that has naturally high pathogenic properties in mice. It has been suggested that the high pathogenicity of this strain for mice could be due to the three strain-specific substitutions in the polymerase complex (Q687R in PB1, N102T in PB2, and E358E/K heterogeneity in PB2). To evaluate the role of these replacements, SA-WT was passaged five times in mouse lungs, and the genome of the mouse-adapted version of the SA-WT strain (SA-M5) was sequenced. SA-M5 lost E358E/K heterogeneity and retained E358, which is the prevalent amino acid at this position among H1N1pdm09 strains. In addition, in the hemagglutinin of SA-M5, two heterogeneous substitutions (G155G/E and S190S/R) were identified. Both viruses, SA-M5 and SA-WT, were compared for their toxicity, ability to replicate, pathogenicity, and immunogenicity in mice. In mice infected with SA-M5 or SA-WT strains, toxicity, virus titer in pulmonary homogenates, and mouse survival did not differ significantly. In contrast, an increase in the immunogenicity of SA-M5 compared to SA-WT was observed. This increase could be due to the substitutions G155G/E and S190S/R in the HA of SA-M5. The prospects for using SA-M5 in studying the immunogenicity mechanisms were also discussed.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza, Human , Humans , Influenza A Virus, H1N1 Subtype/genetics , Virulence/genetics , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Phylogeny
5.
Nat Commun ; 14(1): 6731, 2023 10 23.
Article in English | MEDLINE | ID: mdl-37872136

ABSTRACT

Immunotherapies targeting cancer-specific neoantigens have revolutionized the treatment of cancer patients. Recent evidence suggests that epigenetic therapies synergize with immunotherapies, mediated by the de-repression of endogenous retroviral element (ERV)-encoded promoters, and the initiation of transcription. Here, we use deep RNA sequencing from cancer cell lines treated with DNA methyltransferase inhibitor (DNMTi) and/or Histone deacetylase inhibitor (HDACi), to assemble a de novo transcriptome and identify several thousand ERV-derived, treatment-induced novel polyadenylated transcripts (TINPATs). Using immunopeptidomics, we demonstrate the human leukocyte antigen (HLA) presentation of 45 spectra-validated treatment-induced neopeptides (t-neopeptides) arising from TINPATs. We illustrate the potential of the identified t-neopeptides to elicit a T-cell response to effectively target cancer cells. We further verify the presence of t-neopeptides in AML patient samples after in vivo treatment with the DNMT inhibitor Decitabine. Our findings highlight the potential of ERV-derived neoantigens in epigenetic and immune therapies.


Subject(s)
Endogenous Retroviruses , Neoplasms , Humans , Endogenous Retroviruses/genetics , Histone Deacetylase Inhibitors/pharmacology , T-Lymphocytes , Histocompatibility Antigens Class I
6.
Trop Med Infect Dis ; 8(8)2023 Aug 08.
Article in English | MEDLINE | ID: mdl-37624341

ABSTRACT

Currently, more than 500,000 cases of various helminthes in humans are reported annually in the Russian Federation. This figure may not reflect the true incidence of helminthes, as only nine separate nosological forms are compulsory notifiable. The rest of the species of detected helminthes are included in a separate category of "other helminthes" or "rare helminthes". The bulk of the latter is represented by the helminthes with a rate of incidence that does not exceed one case per 100,000 people. This review is based on data derived from publications in the Russian language, both from the Russian Federation and international, as well as data available from various health treatment facilities in Russia. These data largely cover the period of the 1990s-2010s. A total of 15 species of "rare helminthes" are described in this review: anisakiosis, capillariosis, clonorchosis, dioctophymosis, dipylidiosis, echinochasmosis, fasciolosis, gastrodiscoidosis (amphistomiosis), metagonimosis, metorchiosis, nanophyetosis, pseudamphistomosis, sparganosis (spirometrosis), strongyloidosis and trichostrongylosis. Details of their geographical distribution, clinical and epidemiological peculiarities, and the difficulties they pose in diagnosis are provided. The public health importance of "rare helminthes" in Russia at present and in the forthcoming years is stressed.

7.
Membranes (Basel) ; 13(3)2023 Feb 24.
Article in English | MEDLINE | ID: mdl-36984657

ABSTRACT

The present paper deals with the complex study of CO2 capture from combined heat power plant flue gases using the efficient technological design of a membrane cascade type of «Continuous Membrane Column¼ for binary gas mixture separation. In contrast to well-known multi-step or multi-stage process designs, the cascade type of separation unit provides several advantages. Here, the separation process is implemented in it by creating two counter current flows. In one of them is depleted by the high-permeable component in a continuous mode, meanwhile the other one is enriched. Taking into account that the circulating flows rate overcomes the withdrawn one, there is a multiplicative increase in separation efficiency. A comprehensive study of CO2 capture using the membrane cascade type of «Continuous Membrane Column¼ includes the determination of the optimal membrane material characteristics, the sensitivity study of the process, and a feasibility evaluation. It was clearly demonstrated that the proposed process achieves efficient CO2 capture, which meets the modern requirements in terms of the CO2 content (≥95 mol.%), recovery rate (≥90%), and residual CO2 concentration (≤2 mol.%). Moreover, it was observed that it is possible to process CO2 with a purity of up to 99.8 mol.% at the same recovery rate. This enables the use of this specific process design in CO2 pretreatment operations for the production of high-purity carbon dioxide.

8.
Vaccines (Basel) ; 11(3)2023 Feb 21.
Article in English | MEDLINE | ID: mdl-36992084

ABSTRACT

Current seasonal influenza vaccines have suboptimal effectiveness, especially in seasons dominated by viruses that do not match the vaccine. Therefore, finding new approaches to improve the immunogenicity and efficacy of traditional influenza vaccines is of high priority for public health. Licensed live attenuated influenza vaccine (LAIV) is a promising platform for designing broadly protective vaccines due to its ability to induce cross-reactive T-cell immunity. In this study, we tested the hypothesis that truncation of the nonstructural protein 1 (NS1) and the replacement of the nucleoprotein (NP) of the A/Leningrad/17 master donor virus with a recent NP, i.e., switching to 5:3 genome composition, could improve the cross-protective potential of the LAIV virus. We generated a panel of LAIV candidates differing from the classical vaccine by the source of NP gene and/or by the length of NS1 protein. We showed that NS1-modified LAIV viruses had reduced viral replication in the respiratory tract of mice, indicating a more attenuated phenotype compared to the LAIVs with full-length NS1. Most importantly, the LAIV candidate with both NP and NS genes modified induced a robust systemic and lung-localized memory CD8 T-cell response targeting more recent viruses, and better protected immunized mice against lethal challenge with a heterosubtypic influenza virus than the control LAIV variant. Overall, these data indicate that the 5:3 LAIVs with truncated NS1 may be beneficial for protection against heterologous influenza viruses and warrant further preclinical and clinical development.

9.
Clin Child Fam Psychol Rev ; 26(1): 259-271, 2023 03.
Article in English | MEDLINE | ID: mdl-36609931

ABSTRACT

Aggressive behavior is one of the most common reasons for referrals of youth to mental health treatment. While there are multiple publications describing different types of aggression in children, it remains challenging for clinicians to diagnose and treat aggressive youth, especially those with impulsively aggressive behaviors. The reason for this dilemma is that currently several psychiatric diagnoses include only some of the common symptoms of aggression in their criteria. However, no single diagnosis or diagnostic specifier adequately captures youth with impulsive aggression (IA). Here we review select current diagnostic categories, including behavior and mood disorders, and suggest that they do not provide an adequate description of youth with IA. We also specifically focus on the construct of IA as a distinct entity from other diagnoses and propose a set of initial, provisional diagnostic criteria based on the available evidence that describes youth with IA to use for future evaluation.


Subject(s)
Aggression , Impulsive Behavior , Adolescent , Child , Humans , Aggression/psychology , Mental Disorders , Psychotherapy
10.
J Clin Child Adolesc Psychol ; 52(2): 196-211, 2023.
Article in English | MEDLINE | ID: mdl-34125637

ABSTRACT

OBJECTIVE: Aggression with impulsivity and reactivity (AIR) may distinguish a subset of youth from those with attention problems, rule-breaking behavior, or mood disorders, potentially with differential treatment response. Yet, DSM-5 and ICD-10 do not include an AIR diagnosis. Thus, we empirically grouped youths into profiles based on AIR, manic, depressive, rule-breaking, and self-harm behaviors; examined which profiles replicated across three samples; and characterized profile sets on demographic and clinical features. METHOD: After harmonizing data from three samples (n = 679, n = 392, n = 634), Latent Profile Analysis (LPA) assigned youth to profiles based on caregiver-reported measures of AIR, manic, depressive, rule-breaking, and self-harm behaviors. Profiles from each sample were grouped into sets based on profile similarity. Analyses tested differences in diagnoses, sex, and race, age, functioning, and mood severity. RESULTS: Eight-profile solutions fit best. Seven profiles replicated across samples: high AIR and self-harm, lower depressive and manic scores; high AIR, manic symptoms, and self-harm; high depression symptoms; three smaller sets with high manic and depressive symptoms and moderate AIR; and two high rates of bipolar diagnoses and family bipolar history. Two sets were high on both AIR and mood symptoms, were the most impaired, and had the highest comorbidity. CONCLUSIONS: Analyses support an empirical definition of AIR, separate from mood disorders. Profile sets distinguished by level of AIR and mood symptoms differed in demographic and diagnostic characteristics as well as functioning. Importantly, a set emerged with high AIR but low mood indicators and with high rates of ADHD and ODD, but not mood disorder.


Subject(s)
Bipolar Disorder , Humans , Adolescent , Bipolar Disorder/diagnosis , Bipolar Disorder/psychology , Outpatients , Mood Disorders/diagnosis , Mood Disorders/epidemiology , Depression/diagnosis , Aggression
11.
Vaccines (Basel) ; 10(9)2022 Sep 16.
Article in English | MEDLINE | ID: mdl-36146622

ABSTRACT

The SARS-CoV-2 and influenza viruses are the main causes of human respiratory tract infections with similar disease manifestation but distinct mechanisms of immunopathology and host response to the infection. In this study, we investigated the SARS-CoV-2-specific CD4+ T cell phenotype in comparison with H1N1 influenza-specific CD4+ T cells. We determined the levels of SARS-CoV-2- and H1N1-specific CD4+ T cell responses in subjects recovered from COVID-19 one to 15 months ago by stimulating PBMCs with live SARS-CoV-2 or H1N1 influenza viruses. We investigated phenotypes and frequencies of main CD4+ T cell subsets specific for SARS-CoV-2 using an activation induced cell marker assay and multicolor flow cytometry, and compared the magnitude of SARS-CoV-2- and H1N1-specific CD4+ T cells. SARS-CoV-2-specific CD4+ T cells were detected 1-15 months post infection and the frequency of SARS-CoV-2-specific central memory CD4+ T cells was increased with the time post-symptom onset. Next, SARS-CoV-2-specific CD4+ T cells predominantly expressed the Th17 phenotype, but the level of Th17 cells in this group was lower than in H1N1-specific CD4+ T cells. Finally, we found that the lower level of total Th17 subset within total SARS-CoV-2-specific CD4+ T cells was linked with the low level of CCR4+CXCR3- 'classical' Th17 cells if compared with H1N1-specific Th17 cells. Taken together, our data suggest the involvement of Th17 cells and their separate subsets in the pathogenesis of SARS-CoV-2- and influenza-induced pneumonia; and a better understanding of Th17 mediated antiviral immune responses may lead to the development of new therapeutic strategies.

14.
Vaccines (Basel) ; 10(7)2022 Jul 18.
Article in English | MEDLINE | ID: mdl-35891306

ABSTRACT

The COVID-19 pandemic emerged in 2020 and has caused an unprecedented burden to all countries in the world. SARS-CoV-2 continues to circulate and antigenically evolve, enabling multiple reinfections. To address the issue of the virus antigenic variability, T cell-based vaccines are being developed, which are directed to more conserved viral epitopes. We used live attenuated influenza vaccine (LAIV) virus vector to generate recombinant influenza viruses expressing various T-cell epitopes of SARS-CoV-2 from either neuraminidase (NA) or non-structural (NS1) genes, via the P2A self-cleavage site. Intranasal immunization of human leukocyte antigen-A*0201 (HLA-A2.1) transgenic mice with these recombinant viruses did not result in significant SARS-CoV-2-specific T-cell responses, due to the immunodominance of NP366 influenza T-cell epitope. However, side-by-side stimulation of peripheral blood mononuclear cells (PBMCs) of COVID-19 convalescents with recombinant viruses and LAIV vector demonstrated activation of memory T cells in samples stimulated with LAIV/SARS-CoV-2, but not LAIV alone. Hamsters immunized with a selected LAIV/SARS-CoV-2 prototype were protected against challenge with influenza virus and a high dose of SARS-CoV-2 of Wuhan and Delta lineages, which was confirmed by reduced weight loss, milder clinical symptoms and less pronounced histopathological signs of SARS-CoV-2 infection in the lungs, compared to LAIV- and mock-immunized animals. Overall, LAIV is a promising platform for the development of a bivalent vaccine against influenza and SARS-CoV-2.

15.
Materials (Basel) ; 15(11)2022 May 30.
Article in English | MEDLINE | ID: mdl-35683203

ABSTRACT

In this paper, the effect of hydrogenation, in the amount of 0.15 wt.%, on the short-term creep of a titanium Ti-2.9Al-4.5V-4.8Mo alloy in fine-grained (FG) and ultrafine-grained (UFG) states is studied at 723 K. The UFG structure was formed by the method of pressing with the change of the deformation axis and gradual temperature decrease. Creep tests are performed under conditions of uniaxial tension at a constant load for the creep rates at an interval of (10-7 ÷ 10-6) s-1. The UFG alloy's resistance to creep under the investigated conditions is revealed to be substantially lower than in the FG state. When hydrogen presents in the alloy in a solid solution, a 1.3-2.5-fold rise in the value of the steady-state creep rate for the hydrogenated FG and UFG alloys is observed. The creep of the non-hydrogenated FG and UFG alloys is described by the creep power law. The presence of dissolved hydrogen leads to a violation of the creep power law. The values of stress sensitivity indices, steady-state creep rate, and effective creep activation energy are determined. The relationships between the hydrogenation, structure, and creep mechanisms of the alloy at the steady-state are discussed.

16.
Polymers (Basel) ; 14(11)2022 May 30.
Article in English | MEDLINE | ID: mdl-35683886

ABSTRACT

The present study continues the development and enhancement of a highly efficient unique hybrid technique-membrane-assisted gas absorption in designing the separation unit, which provides the improvement in mass-transfer of a target component during the ammonia capture process from a process loop of the Haber-Bosch technological route. In order to minimize the absorbent volume to membrane area ratio, the special separation cell was designed based on a combination of two types of hollow fiber membranes, dense gas separation membrane and porous pervaporation membrane. The separation performance tests were implemented under two sets of conditions, sweeping the bore (permeate) side of a cell with helium and hydrogen-nitrogen mix. For both cases, the membrane-assisted gas absorption cell demonstrated high separation efficiency, and the ammonia concentration in the permeate was never lower than 81 mol%; meanwhile, under the hydrogen-nitrogen bore sweep conditions, the ammonia concentration in the permeate reached 97.5 mol% in a single-step process. Nevertheless, there is a product purity-recovery rate trade-off, which is a typical issue for separation processes.

17.
Nat Metab ; 4(6): 693-710, 2022 06.
Article in English | MEDLINE | ID: mdl-35760868

ABSTRACT

Elevated production of collagen-rich extracellular matrix is a hallmark of cancer-associated fibroblasts (CAFs) and a central driver of cancer aggressiveness. Here we find that proline, a highly abundant amino acid in collagen proteins, is newly synthesized from glutamine in CAFs to make tumour collagen in breast cancer xenografts. PYCR1 is a key enzyme for proline synthesis and highly expressed in the stroma of breast cancer patients and in CAFs. Reducing PYCR1 levels in CAFs is sufficient to reduce tumour collagen production, tumour growth and metastatic spread in vivo and cancer cell proliferation in vitro. Both collagen and glutamine-derived proline synthesis in CAFs are epigenetically upregulated by increased pyruvate dehydrogenase-derived acetyl-CoA levels. PYCR1 is a cancer cell vulnerability and potential target for therapy; therefore, our work provides evidence that targeting PYCR1 may have the additional benefit of halting the production of a pro-tumorigenic extracellular matrix. Our work unveils new roles for CAF metabolism to support pro-tumorigenic collagen production.


Subject(s)
Breast Neoplasms , Cancer-Associated Fibroblasts , Pyrroline Carboxylate Reductases/metabolism , Breast Neoplasms/metabolism , Cancer-Associated Fibroblasts/metabolism , Cancer-Associated Fibroblasts/pathology , Carcinogenesis/metabolism , Carcinogenesis/pathology , Collagen/metabolism , Extracellular Matrix/metabolism , Female , Glutamine/metabolism , Humans , Proline , delta-1-Pyrroline-5-Carboxylate Reductase
18.
Materials (Basel) ; 15(9)2022 May 06.
Article in English | MEDLINE | ID: mdl-35591666

ABSTRACT

Radiation damage is one of the significant factors limiting the operating time of many structural materials working under extreme conditions. One of the promising directions in the development of materials that are resistant to radiation damage and have improved physical and mechanical properties is the creation of nanoscale multilayer coatings (NMCs). The paper is devoted to the experimental comprehension of changes in the defect structure and mechanical properties of nanoscale multilayer coatings (NMCs) with alternating layers of Zr and Nb under irradiation. Series of Zr/Nb NMCs with different thicknesses of individual layers were fabricated by magnetron sputtering and subjected to H+ irradiation. The evolution of structure and phase states, as well as the defect state under proton irradiation, was studied using the methods of high-resolution transmission electron microscopy (HRTEM), X-ray diffraction analysis (XRD), glow discharge optical emission spectroscopy (GDOES), and positron annihilation spectroscopy (PAS). The layer-by-layer analysis of structural defects was carried out by Doppler broadening spectroscopy (DBS) using a variable-energy positron beam. To estimate the binding energy and the energy paths for the hydrogen diffusion in Zr/Nb NMCs, calculations from the first principles were used. When the thickness of individual layers is less than 25 nm, irradiation causes destruction of the interfaces, but there is no significant increase in the defect level, the S parameter (open volume defects amount) before and after irradiation is practically unchanged. After irradiation of NMC Zr/Nb with a thickness of layers 50 and 100 nm, the initial microstructure is retained, and the S parameter is significantly reduced. The GDOES data reveal the irregular H accumulation at the interface caused by significant differences in H diffusion barriers in the bulk of Zr and Nb multilayers as well as near the interface's region.

19.
Article in English | MEDLINE | ID: mdl-35270788

ABSTRACT

Human dirofilariasis is a vector-borne helminth disease caused by two species of Dirofilaria: D. repens and D. immitis. The vectors of the helminth are mosquitoes in the family Culicidae. The definitive hosts of Dirofilaria are dogs and, to a lesser extent, cats. Humans are accidental hosts. Dirofilariasis has been reported in the territory of Russia since 1915. Sporadic cases of the disease have been reported occasionally, but the number of cases showed a distinct increasing trend in the late 1980s-early 1990s, when the number of cases reached several hundred in the southern territories of Russia, with geographic coordinates of 43° N-45° N. A comparison of the timing of the global trend of climate warming during the 1990s with the temporal pattern of the incidence of dirofilariasis in the territory of Russia indicated a close association between the two phenomena. At present, the northern range of Dirofilaria includes latitudes higher than 58° in both the European and Asian parts of the country. The phenomenon of climate warming in the territory of Russia has shaped the contemporary epidemiology of the disease. The emerging public health problem of dirofilariasis in Russia warrants the establishment of a comprehensive epidemiological monitoring system.


Subject(s)
Culicidae , Dirofilaria immitis , Dirofilaria repens , Dirofilariasis , Animals , Climate Change , Dirofilariasis/epidemiology , Dogs , Humans , Mosquito Vectors
20.
Vaccines (Basel) ; 10(3)2022 Mar 03.
Article in English | MEDLINE | ID: mdl-35335027

ABSTRACT

The influenza virus continually evolves because of the high mutation rate, resulting in dramatic changes in its pathogenicity and other biological properties. This study aimed to evaluate the evolution of certain essential properties, understand the connections between them, and find the molecular basis for the manifestation of these properties. To that end, 21 A(H1N1)pdm09 influenza viruses were tested for their pathogenicity and toxicity in a mouse model with a ts/non-ts phenotype manifestation and HA thermal stability. The results demonstrated that, for a strain to have high pathogenicity, it must express a toxic effect, have a non-ts phenotype, and have a thermally stable HA. The ancestor A/California/07/2009 (H1N1)pdm influenza virus expressed the non-ts phenotype, after which the cycling trend of the ts/non-ts phenotype was observed in new strains of A(H1N1)pdm09 influenza viruses, indicating that the ratio of the ts phenotype will increase in the coming years. Of the 21 tested viruses, A/South Africa/3626/2013 had the high pathogenicity in the mouse model. Sequence alignment analysis showed that this virus has three unique mutations in the polymerase complex, two of which are in the PB2 gene and one that is in the PB1 gene. Further study of these mutations might explain the distinguishing pathogenicity.

SELECTION OF CITATIONS
SEARCH DETAIL
...