Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Bone ; 186: 117167, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38876270

ABSTRACT

We evaluated the potential of sclerostin antibody (SclAb) therapy to enhance osseointegration of dental and orthopaedic implants in a mouse model (Brtl/+) mimicking moderate to severe Osteogenesis Imperfecta (OI). To address the challenges in achieving stable implant integration in compromised bone conditions, our aim was to determine the effectiveness of sclerostin antibody (SclAb) at improving bone-to-implant contact and implant fixation strength. Utilizing a combination of micro-computed tomography, mechanical push-in testing, immunohistochemistry, and Western blot analysis, we observed that SclAb treatment significantly enhances bone volume fraction (BV/TV) and bone-implant contact (BIC) in Brtl/+ mice, suggesting a normalization of bone structure toward WT levels. Despite variations in implant survival rates between the maxilla and tibia, SclAb treatment consistently improved implant stability and resistance to mechanical forces, highlighting its potential to overcome the inherent challenges of OI in dental and orthopaedic implant integration. These results suggest that SclAb could be a valuable therapeutic approach for enhancing implant success in compromised bone conditions.

2.
Bone ; 179: 116983, 2024 02.
Article in English | MEDLINE | ID: mdl-38013019

ABSTRACT

Stress fractures occur as a result of repeated mechanical stress on bone and are commonly found in the load-bearing lower extremities. Macrophages are key players in the immune system and play an important role in bone remodeling and fracture healing. However, the role of macrophages in stress fractures has not been adequately addressed. We hypothesize that macrophage infiltration into a stress fracture callus site promotes bone healing. To test this, a unilateral stress fracture induction model was employed in which the murine ulna of four-month-old, C57BL/6 J male mice was repeatedly loaded with a pre-determined force until the bone was displaced a distance below the threshold for complete fracture. Mice were treated daily with parathyroid hormone (PTH, 50 µg/kg/day) starting two days before injury and continued until 24 h before euthanasia either four or six days after injury, or treated with trabectedin (0.15 mg/kg) on the day of stress fracture and euthanized three or seven days after injury. These treatments were used due to their established effects on macrophages. While macrophages have been implicated in the anabolic effects of PTH, trabectedin, an FDA approved chemotherapeutic, compromises macrophage function and reduces bone mass. At three- and four-days post injury, callus macrophage numbers were analyzed histologically. There was a significant increase in macrophages with PTH treatment compared to vehicle in the callus site. By one week of healing, treatments differentially affected the bony callus as analyzed by microcomputed tomography. PTH enhanced callus bone volume. Conversely, callus bone volume was decreased with trabectedin treatment. Interestingly, concurrent treatment with PTH and trabectedin rescued the reduction observed in the callus with trabectedin treatment alone. This study reports on the key involvement of macrophages during stress fracture healing. Given these observed outcomes on macrophage physiology and bone healing, these findings may be important for patients actively receiving either of these FDA-approved therapeutics.


Subject(s)
Fractures, Stress , Parathyroid Hormone , Humans , Male , Mice , Animals , Infant , Parathyroid Hormone/pharmacology , Parathyroid Hormone/therapeutic use , Trabectedin/pharmacology , Fractures, Stress/drug therapy , Fractures, Stress/pathology , X-Ray Microtomography/methods , Mice, Inbred C57BL , Bony Callus/pathology , Fracture Healing , Macrophages
3.
Aging Cell ; 22(9): e13903, 2023 09.
Article in English | MEDLINE | ID: mdl-37365004

ABSTRACT

Hutchinson-Gilford progeria syndrome (HGPS) is a premature aging disorder affecting tissues of mesenchymal origin. Most individuals with HGPS harbor a de novo c.1824C > T (p.G608G) mutation in the gene encoding lamin A (LMNA), which activates a cryptic splice donor site resulting in production of the toxic "progerin" protein. Clinical manifestations include growth deficiency, lipodystrophy, sclerotic dermis, cardiovascular defects, and bone dysplasia. Here we utilized the LmnaG609G knock-in (KI) mouse model of HGPS to further define mechanisms of bone loss associated with normal and premature aging disorders. Newborn skeletal staining of KI mice revealed altered rib cage shape and spinal curvature, and delayed calvarial mineralization with increased craniofacial and mandibular cartilage content. MicroCT analysis and mechanical testing of adult femurs indicated increased fragility associated with reduced bone mass, recapitulating the progressive bone deterioration that occurs in HGPS patients. We investigated mechanisms of bone loss in KI mice at the cellular level in bone cell populations. Formation of wild-type and KI osteoclasts from marrow-derived precursors was inhibited by KI osteoblast-conditioned media in vitro, suggesting a secreted factor(s) responsible for decreased osteoclasts on KI trabecular surfaces in vivo. Cultured KI osteoblasts exhibited abnormal differentiation characterized by reduced deposition and mineralization of extracellular matrix with increased lipid accumulation compared to wild-type, providing a mechanism for altered bone formation. Furthermore, quantitative analyses of KI transcripts confirmed upregulation of adipogenic genes both in vitro and in vivo. Thus, osteoblast phenotypic plasticity, inflammation and altered cellular cross-talk contribute to abnormal bone formation in HGPS mice.


Subject(s)
Aging, Premature , Bone Diseases, Developmental , Progeria , Mice , Animals , Progeria/genetics , Progeria/metabolism , Mutation , Lamin Type A/genetics , Lamin Type A/metabolism , Cell Differentiation
4.
Int Urogynecol J ; 33(12): 3543-3553, 2022 12.
Article in English | MEDLINE | ID: mdl-35254469

ABSTRACT

INTRODUCTION AND HYPOTHESIS: Human menopause transition and post-menopausal syndrome, driven by reduced ovarian activity and estrogen levels, are associated with an increased risk for symptoms including but not limited to sexual dysfunction, metabolic disease, and osteoporosis. Current treatments are limited in efficacy and may have adverse consequences, so investigation for additional treatment options is necessary. Previous studies have demonstrated that percutaneous tibial nerve stimulation (PTNS) and electro-acupuncture near the tibial nerve are minimally invasive treatments that increase vaginal blood perfusion or serum estrogen in the rat model. We hypothesized that PTNS would protect against harmful reproductive and systemic changes associated with menopause. METHODS: We examined the effects of twice-weekly PTNS (0.2 ms pulse width, 20 Hz, 2× motor threshold) under ketamine-xylazine anesthesia in ovariectomized (OVX) female Sprague-Dawley rats on menopause-associated physiological parameters including serum estradiol, body weight, blood glucose, bone health, and vaginal blood perfusion. Rats were split into three groups (n = 10 per group): (1) intact control (no stimulation), (2) OVX control (no stimulation), and (3) OVX stimulation (treatment group). RESULTS: PTNS did not affect serum estradiol levels, body weight, or blood glucose. PTNS transiently increased vaginal blood perfusion during stimulation for up to 5 weeks after OVX and increased areal bone mineral density and yield load of the right femur (side of stimulation) compared to the unstimulated OVX control. CONCLUSIONS: PTNS may ameliorate some symptoms associated with menopause. Additional studies to elucidate the full potential of PTNS on menopause-associated symptoms under different experimental conditions are warranted.


Subject(s)
Blood Glucose , Bone Density , Humans , Rats , Female , Animals , Rats, Sprague-Dawley , Tibial Nerve/physiology , Menopause , Estrogens , Body Weight , Estradiol , Perfusion , Ovariectomy/adverse effects
5.
Bone ; 153: 116156, 2021 12.
Article in English | MEDLINE | ID: mdl-34425286

ABSTRACT

The trimeric thrombospondin homologs, TSP1 and TSP2, are both components of bone tissue and contribute in redundant and distinct ways to skeletal physiology. TSP1-null mice display increased femoral cross-sectional area and thickness due to periosteal expansion, as well as diminished matrix quality and impaired osteoclast function. TSP2-null mice display increased femoral cross-sectional thickness and reduced marrow area due to increased endosteal osteoblast activity, with very little periosteal expansion. Osteoblast lineage cells are reduced in TSP2-null mice, but not in TSP1-null. The functional effects of combined TSP1 and TSP2 deficiency remain to be elucidated. Here, we examined the spectrum of detergent soluble proteins in diaphyseal cortical bone of growing (6-week old) male and female mice deficient in both thrombospondins (double knockout (DKO)). Of 3429 detected proteins, 195 were differentially abundant in both male and female DKO bones. Physiologically relevant annotation terms identified by Ingenuity Pathway Analysis included "ECM degradation" and "Quantity of Monocytes." Manual inspection revealed that a number of proteins with shared expression among osteoclasts and osteocytes were reduced in DKO bones. To associate changes in protein content with phenotype, we examined 12-week old male and female DKO and WT mice. DKO mice were smaller than WT and in male DKO, femoral cross section area was reduced. Some of the male DKO femora also had a flattened, less circular cross-section. Male DKO bones were less stiff in bending and they displayed reduced ultimate load. Displacements at yield load and at max load were both elevated in male DKO. However, the ratios of post-yield to pre-yield displacements significantly diminished in DKO suggesting proportionally reduced post-yield behavior. Male DKO mice also exhibited reductions in trabecular bone mass, which were surprisingly associated with equivalent osteoblast numbers and accordingly increased osteoblast surface. Marrow-derived colony forming unit-fibroblastic was reduced in male and female DKO mice. Together our data suggest that when both TSP1 and TSP2 are absent, a unique, sex-specific bone phenotype not predicted by the single knockouts, is manifested.


Subject(s)
Thrombospondin 1 , Thrombospondins , Animals , Female , Gene Knockout Techniques , Male , Mice , Mice, Knockout , Phenotype , Thrombospondin 1/genetics , Thrombospondins/genetics
6.
Ann Plast Surg ; 85(1): 83-88, 2020 07.
Article in English | MEDLINE | ID: mdl-32187072

ABSTRACT

Adipose-derived stem cells mitigate deleterious effects of radiation on bone and enhance radiated fracture healing by replacing damaged cells and stimulating angiogenesis. However, adipose-derived stem cell harvest and delivery techniques must be refined to comply with the US Food and Drug Administration restrictions on implantation of cultured cells into human subjects prior to clinical translation. The purpose of this study is to demonstrate the preservation of efficacy of adipose-derived stem cells to remediate the injurious effects of radiation on fracture healing utilizing a novel harvest and delivery technique that avoids the need for cell culture. Forty-four Lewis rats were divided into 4 groups: fracture control (Fx), radiated fracture control (XFx), radiated fracture treated with cultured adipose-derived stem cells (ASC), and radiated fracture treated with noncultured minimally processed adipose-derived stem cells (MP-ASC). Excluding the Fx group, all rats received a fractionated human-equivalent dose of radiation. All groups underwent mandibular osteotomy with external fixation. Following sacrifice on postoperative day 40, union rate, mineralization, and biomechanical strength were compared between groups at P < 0.05 significance. Compared with Fx controls, the XFx group demonstrated decreased union rate (100% vs 20%), bone volume fraction (P = 0.003), and ultimate load (P < 0.001). Compared with XFx controls, the MP-ASC group tripled the union rate (20% vs 60%) and demonstrated statistically significant increases in both bone volume fraction (P = 0.005) and ultimate load (P = 0.025). Compared with the MP-ASC group, the ASC group showed increased union rate (60% vs 100%) and no significant difference in bone volume fraction (P = 0.936) and ultimate load (P = 0.202). Noncultured minimally processed adipose-derived stem cells demonstrate the capacity to improve irradiated fracture healing without the need for cell proliferation in culture. Further refinement of the cell harvest and delivery techniques demonstrated in this report will enhance the ability of noncultured minimally processed adipose-derived stem cells to improve union rate and bone quality, thereby optimizing clinical translation.


Subject(s)
Adipocytes , Fracture Healing , Adipose Tissue , Animals , Cells, Cultured , Rats , Rats, Inbred Lew , Stem Cells
7.
Bone ; 133: 115250, 2020 04.
Article in English | MEDLINE | ID: mdl-31981754

ABSTRACT

As a dedicated experimentalist, John Currey praised the high potential of finite element (FE) analysis but also recognized its critical limitations. The application of the FE methodology to bone tissue is reviewed in the light of his enthusiastic and colorful statements. In the past decades, FE analysis contributed substantially to the understanding of structure-function properties in the hierarchical organization of bone and to the simulation of bone adaptation. The systematic experimental validation of FE analysis of bone strength in anatomical locations at risk of fracture led to its application in clinical studies to evaluate efficacy of antiresorptive or anabolic treatment of bone fragility. Beyond the successful analyses of healthy or osteoporotic bone, FE analysis becomes increasingly involved in the investigation of other fragility-related bone diseases. The case of osteogenesis imperfecta (OI) is exposed, the multiscale alterations of the bone tissue and the effect of treatment summarized. A few FE analyses attempting to answer open questions in OI are then reported. An original study is finally presented that explored the structural properties of the Brtl/+ murine model of OI type IV subjected to sclerostin neutralizing antibody treatment using microFE analysis. The use of identical material properties in the four-point bending FE simulations of the femora reproduced not only the experimental values but also the statistical comparisons examining the effect of disease and treatment. Further efforts are needed to build upon the extraordinary legacy of John Currey and clarify the impact of different bone diseases on the hierarchical mechanical properties of bone.


Subject(s)
Fractures, Bone , Osteogenesis Imperfecta , Animals , Bone Density , Bone and Bones , Femur , Finite Element Analysis , Mice , Osteogenesis Imperfecta/drug therapy
8.
Adv Healthc Mater ; 8(20): e1900477, 2019 10.
Article in English | MEDLINE | ID: mdl-31556241

ABSTRACT

The bladder, stomach, intestines, heart, and lungs all move dynamically to achieve their purpose. A long-term implantable device that can attach onto an organ, sense its movement, and deliver current to modify the organ function would be useful in many therapeutic applications. The bladder, for example, can suffer from incomplete contractions that result in urinary retention with patients requiring catheterization. Those affected may benefit from a combination of a strain sensor and electrical stimulator to better control bladder emptying. The materials and design of such a device made from thin layer carbon nanotube (CNT) and Ecoflex 00-50 are described and demonstrate its function with in vivo feline bladders. During bench-top characterization, the resistive and capacitive sensors exhibit stability throughout 5000 stretching cycles under physiology conditions. In vivo measurements with piezoresistive devices show a high correlation between sensor resistance and volume. Stimulation driven from platinum-silicone composite electrodes successfully induce bladder contraction. A method for reliable connection and packaging of medical grade wire to the CNT device is also presented. This work is an important step toward the translation of low-durometer elastomers, stretchable CNT percolation, and platinum-silicone composite, which are ideal for large-strain bioelectric applications to sense or modulate dynamic organ states.


Subject(s)
Nanotubes, Carbon/chemistry , Urinary Bladder/physiology , Urinary Bladder/physiopathology , Animals , Cats , Computer Simulation , Dimethylpolysiloxanes/chemistry , Elastomers , Electrodes , Electronics/methods , Equipment Design , Materials Testing , Monitoring, Physiologic , Nanotechnology/instrumentation , Polyesters , Silicones/chemistry , Stress, Mechanical , Swine , Tensile Strength , Urinary Catheterization
SELECTION OF CITATIONS
SEARCH DETAIL
...