Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.849
Filter
1.
Gut ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38955400

ABSTRACT

OBJECTIVE: Gut microbiome composition is associated with multiple diseases, but relatively little is known about its relationship with long-term outcome measures. While gut dysbiosis has been linked to mortality risk in the general population, the relationship with overall survival in specific diseases has not been extensively studied. In the current study, we present results from an in-depth analysis of the relationship between gut dysbiosis and all-cause and cause-specific mortality in the setting of solid organ transplant recipients (SOTR). DESIGN: We analysed 1337 metagenomes derived from faecal samples of 766 kidney, 334 liver, 170 lung and 67 heart transplant recipients part of the TransplantLines Biobank and Cohort-a prospective cohort study including extensive phenotype data with 6.5 years of follow-up. To analyze gut dysbiosis, we included an additional 8208 metagenomes from the general population of the same geographical area (northern Netherlands). Multivariable Cox regression and a machine learning algorithm were used to analyse the association between multiple indicators of gut dysbiosis, including individual species abundances, and all-cause and cause-specific mortality. RESULTS: We identified two patterns representing overall microbiome community variation that were associated with both all-cause and cause-specific mortality. The gut microbiome distance between each transplantation recipient to the average of the general population was associated with all-cause mortality and death from infection, malignancy and cardiovascular disease. A multivariable Cox regression on individual species abundances identified 23 bacterial species that were associated with all-cause mortality, and by applying a machine learning algorithm, we identified a balance (a type of log-ratio) consisting of 19 out of the 23 species that were associated with all-cause mortality. CONCLUSION: Gut dysbiosis is consistently associated with mortality in SOTR. Our results support the observations that gut dysbiosis is associated with long-term survival. Since our data do not allow us to infer causality, more preclinical research is needed to understand mechanisms before we can determine whether gut microbiome-directed therapies may be designed to improve long-term outcomes.

2.
Biol Psychiatry Glob Open Sci ; 4(4): 100321, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38957312

ABSTRACT

Background: Sex-differential biology may contribute to the consistently male-biased prevalence of autism spectrum disorder (ASD). Gene expression differences between males and females in the brain can indicate possible molecular and cellular mechanisms involved, although transcriptomic sex differences during human prenatal cortical development have been incompletely characterized, primarily due to small sample sizes. Methods: We performed a meta-analysis of sex-differential expression and co-expression network analysis in 2 independent bulk RNA sequencing datasets generated from cortex of 273 prenatal donors without known neuropsychiatric disorders. To assess the intersection between neurotypical sex differences and neuropsychiatric disorder biology, we tested for enrichment of ASD-associated risk genes and expression changes, neuropsychiatric disorder risk genes, and cell type markers within identified sex-differentially expressed genes (sex-DEGs) and sex-differential co-expression modules. Results: We identified 101 significant sex-DEGs, including Y-chromosome genes, genes impacted by X-chromosome inactivation, and autosomal genes. Known ASD risk genes, implicated by either common or rare variants, did not preferentially overlap with sex-DEGs. We identified 1 male-specific co-expression module enriched for immune signaling that is unique to 1 input dataset. Conclusions: Sex-differential gene expression is limited in prenatal human cortex tissue, although meta-analysis of large datasets allows for the identification of sex-DEGs, including autosomal genes that encode proteins involved in neural development. Lack of sex-DEG overlap with ASD risk genes in the prenatal cortex suggests that sex-differential modulation of ASD symptoms may occur in other brain regions, at other developmental stages, or in specific cell types, or may involve mechanisms that act downstream from mutation-carrying genes.


Males are more commonly diagnosed with autism spectrum disorder than females, and sex differences in brain development may contribute to this difference. Here, we define differences in gene expression patterns between males and females in human prenatal brain tissue from 273 donors to identify 101 genes that are expressed at different levels in males and females and gene sets that show sex-specific expression correlations. Genes with autism-associated DNA variants and genes with altered expression in autism do not preferentially overlap with sex-differential genes, suggesting that sex-differential biology may influence autism risk mechanisms in other brain regions, at other developmental stages, or in specific cell types.

3.
Brief Bioinform ; 25(4)2024 May 23.
Article in English | MEDLINE | ID: mdl-38966948

ABSTRACT

Variants in cis-regulatory elements link the noncoding genome to human pathology; however, detailed analytic tools for understanding the association between cell-level brain pathology and noncoding variants are lacking. CWAS-Plus, adapted from a Python package for category-wide association testing (CWAS), enhances noncoding variant analysis by integrating both whole-genome sequencing (WGS) and user-provided functional data. With simplified parameter settings and an efficient multiple testing correction method, CWAS-Plus conducts the CWAS workflow 50 times faster than CWAS, making it more accessible and user-friendly for researchers. Here, we used a single-nuclei assay for transposase-accessible chromatin with sequencing to facilitate CWAS-guided noncoding variant analysis at cell-type-specific enhancers and promoters. Examining autism spectrum disorder WGS data (n = 7280), CWAS-Plus identified noncoding de novo variant associations in transcription factor binding sites within conserved loci. Independently, in Alzheimer's disease WGS data (n = 1087), CWAS-Plus detected rare noncoding variant associations in microglia-specific regulatory elements. These findings highlight CWAS-Plus's utility in genomic disorders and scalability for processing large-scale WGS data and in multiple-testing corrections. CWAS-Plus and its user manual are available at https://github.com/joonan-lab/cwas/ and https://cwas-plus.readthedocs.io/en/latest/, respectively.


Subject(s)
Whole Genome Sequencing , Humans , Whole Genome Sequencing/methods , Alzheimer Disease/genetics , Genome-Wide Association Study/methods , Autism Spectrum Disorder/genetics , Genetic Variation , Software , Chromatin/genetics , Chromatin/metabolism , Genome, Human
4.
J Clin Med ; 13(13)2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38999257

ABSTRACT

Metformin is the most widely used drug in type 2 diabetes. Regular metformin use has been associated with changes in concentrations of amino acids. In the present study, we used valid stable-isotope labeled GC-MS methods to measure amino acids and metabolites, including creatinine as well as malondialdehyde (MDA), as an oxidative stress biomarker in plasma, urine, and dialysate samples in a patient at admission to the intensive care unit and during renal replacement treatment because of metformin-associated lactic acidosis (MALA, 21 mM lactate, 175 µM metformin). GC-MS revealed lower concentrations of amino acids in plasma, normal concentrations of the nitric oxide (NO) metabolites nitrite and nitrate, and normal concentrations of MDA. Renal tubular reabsorption rates were altered on admission. The patient received renal replacement therapy over 50 to 70 h of normalized plasma amino acid concentrations and their tubular reabsorption, as well as the tubular reabsorption of nitrite and nitrate. This study indicates that GC-MS is a versatile analytical tool to measure different classes of physiological inorganic and organic substances in complex biological samples in clinical settings such as MALA.

5.
ACS Chem Biol ; 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38980123

ABSTRACT

Targeted protein degradation (TPD) is a therapeutic approach that leverages the cell's natural machinery to degrade targets instead of inhibiting them. This is accomplished by using mono- or bifunctional small molecules designed to induce the proximity of target proteins and E3 ubiquitin ligases, leading to ubiquitination and subsequent proteasome-dependent degradation of the target. One of the most significant attributes of the TPD approach is its proposed catalytic mechanism of action, which permits substoichiometric exposure to achieve the desired pharmacological effects. However, apart from one in vitro study, studies supporting the catalytic mechanism of degraders are largely inferred based on potency. A more comprehensive understanding of the degrader catalytic mechanism of action can help aspects of compound development. To address this knowledge gap, we developed a workflow for the quantitative measurement of the catalytic rate of degraders in cells. Comparing a selective and promiscuous BTK degrader, we demonstrate that both compounds function as efficient catalysts of BTK degradation, with the promiscuous degrader exhibiting faster rates due to its ability to induce more favorable ternary complexes. By leveraging computational modeling, we show that the catalytic rate is highly dynamic as the target is depleted from cells. Further investigation of the promiscuous kinase degrader revealed that the catalytic rate is a better predictor of optimal degrader activity toward a specific target compared to degradation magnitude alone. In summary, we present a versatile method for mapping the catalytic activity of any degrader for TPD in cells.

6.
J Med Virol ; 96(7): e29806, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39007420

ABSTRACT

Optimization of individual immunosuppression, which reduces the risks of both graft loss and patients' death, is considered the best approach to improve long-term outcomes of renal transplantation. Torque Teno Virus (TTV) DNAemia has emerged as a potential biomarker reflecting the depth of therapeutic immunosuppression during the initial year post-transplantation. However, its efficacy in long-term monitoring remains uncertain. In a cohort study involving 34 stable kidney transplant recipients and 124 healthy volunteers, we established lower and upper TTV DNAemia thresholds (3.75-5.1 log10 cp/mL) correlating with T-cell activatability, antibody response against flu vaccine, and risk for subsequent serious infections or cancer over 50 months. Validation in an independent cohort of 92 recipients confirmed that maintaining TTV DNAemia within this range in >50% of follow-up time points was associated with reduced risks of complications due to inadequate immunosuppression, including de novo DSA, biopsy-proven antibody-mediated rejection, graft loss, infections, or cancer. Multivariate analysis highlighted "in-target" TTV DNAemia as the sole independent variable significantly linked to decreased risk for long-term complications due to inadequate immunosuppression (odds ratio [OR]: 0.27 [0.09-0.77]; p = 0.019). Our data suggest that the longitudinal monitoring of TTV DNAemia in kidney transplant recipients could help preventing the long-term complications due to inadequate immunosuppression.


Subject(s)
DNA Virus Infections , DNA, Viral , Immunosuppression Therapy , Kidney Transplantation , Torque teno virus , Transplant Recipients , Humans , Torque teno virus/genetics , Kidney Transplantation/adverse effects , Male , Female , Middle Aged , DNA, Viral/blood , Adult , DNA Virus Infections/virology , DNA Virus Infections/blood , DNA Virus Infections/immunology , Immunosuppression Therapy/adverse effects , Longitudinal Studies , Aged , Graft Rejection , Immunosuppressive Agents/therapeutic use , Immunosuppressive Agents/adverse effects , Cohort Studies , Viremia
7.
Eur J Heart Fail ; 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39015086

ABSTRACT

AIM: Senescence is a major risk factor for heart failure (HF), and insulin-like growth factor-binding protein-7 (IGFBP7) has been identified as an important senescence-inducing factor. The aim of this study was to examine the value of baseline and repeat IGFBP7 measurements in predicting future HF among community-dwelling Dutch adults from the Prevention of Renal and Vascular End-stage Disease (PREVEND) study. METHODS AND RESULTS: Individuals without prevalent HF who attended PREVEND visits 2 and 4 median of 5.1 years apart (25th-75th percentile, 4.9-5.2) with measurements of IGFBP7 were included. We used Cox proportional hazards models to investigate the association between IGFBP7 and HF incidence. A total of 6125 participants attending visit 2 (mean ± standard deviation [SD] age 53.1 ± 12.2 years; 3151 [51.4%] men) were followed for a median of 8.4 (7.8-8.9) years, and 194 participants (3.2%) developed incident HF. Median baseline IGFBP7 concentration was 87.0 (75.1-97.3) ng/ml, and baseline IGFBP7 levels were significantly associated with risk for incident HF (HF risk factors adjusted hazard ratio [HR] per 1 SD change in log-transformed IGFBP7: 1.22, 95% confidence interval [CI] 1.03-1.46). Baseline IGFBP7 was also significantly associated with incident HF in individuals with N-terminal pro-B-type natriuretic peptide <125 ng/L. Among 3879 participants attending both visits 2 and 4 (mean ± SD age 57.5 ± 11.3 years; 1952 [50.3%] men), 93 individuals developed HF (after visit 4) during a median follow-up of 3.2 (2.8-3.9) years. Median increase in IGFBP7 concentration between visits was 0.68 (-7.09 to 8.36) ng/ml, and changes in IGFBP7 levels were significantly associated with risk for incident HF (HF risk factors adjusted HR per 1 SD change in log-transformed IGFBP7: 1.68, 95% CI 1.19-2.36). CONCLUSIONS: Both baseline as well as repeat IGFBP7 measurements provide information about the risk of developing HF.

8.
Am J Surg ; : 115784, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38824053

ABSTRACT

BACKGROUND: Cognitive impairment affects nearly half of vascular surgery patients, but its association with postoperative outcomes remains poorly understood. This study explores the link between preoperative cognitive performance and postoperative complications, including postoperative delirium, in vascular surgery patients. METHODS: A prospective cohort study was conducted on vascular surgery patients aged ≥65. Preoperative cognitive performance was assessed using the Montreal Cognitive Assessment, and postoperative complications were evaluated using the Comprehensive Complication Index. The association was analyzed through multivariable logistic regression. RESULTS: Among 110 patients (18.2 â€‹% female, mean age 73.8 â€‹± â€‹5.7 years), cognitive impairment was evident in 48.2 â€‹%. Of the participants, 29 (26.3 â€‹%) experienced postoperative complications, among which 11 (10 â€‹%) experienced postoperative delirium. The adjusted odds ratio for the association between cognitive performance and postoperative complications was 1.19 (95 â€‹% CI 1.02-1.38; p â€‹= â€‹0.02). CONCLUSION: Worse preoperative cognitive performance correlated with increased odds of postoperative complications and postoperative delirium in vascular surgery patients.

9.
Front Neurosci ; 18: 1396966, 2024.
Article in English | MEDLINE | ID: mdl-38835836

ABSTRACT

Understanding the retinogeniculate pathway in vitro can offer insights into its development and potential for future therapeutic applications. This study presents a Polydimethylsiloxane-based two-chamber system with axon guidance channels, designed to replicate unidirectional retinogeniculate signal transmission in vitro. Using embryonic rat retinas, we developed a model where retinal spheroids innervate thalamic targets through up to 6 mm long microfluidic channels. Using a combination of electrical stimulation and functional calcium imaging we assessed how channel length and electrical stimulation frequency affects thalamic target response. In the presented model we integrated up to 20 identical functional retinothalamic neural networks aligned on a single transparent microelectrode array, enhancing the robustness and quality of recorded functional data. We found that network integrity depends on channel length, with 0.5-2 mm channels maintaining over 90% morphological and 50% functional integrity. A reduced network integrity was recorded in longer channels. The results indicate a notable reduction in forward spike propagation in channels longer than 4 mm. Additionally, spike conduction fidelity decreased with increasing channel length. Yet, stimulation-induced thalamic target activity remained unaffected by channel length. Finally, the study found that a sustained thalamic calcium response could be elicited with stimulation frequencies up to 31 Hz, with higher frequencies leading to transient responses. In conclusion, this study presents a high-throughput platform that demonstrates how channel length affects retina to brain network formation and signal transmission in vitro.

10.
Learn Mem ; 31(5)2024 May.
Article in English | MEDLINE | ID: mdl-38862173

ABSTRACT

The intricate molecular and structural sequences guiding the formation and consolidation of memories within neuronal circuits remain largely elusive. In this study, we investigate the roles of two pivotal presynaptic regulators, the small GTPase Rab3, enriched at synaptic vesicles, and the cell adhesion protein Neurexin-1, in the formation of distinct memory phases within the Drosophila mushroom body Kenyon cells. Our findings suggest that both proteins play crucial roles in memory-supporting processes within the presynaptic terminal, operating within distinct plasticity modules. These modules likely encompass remodeling and maturation of existing active zones (AZs), as well as the formation of new AZs.


Subject(s)
Drosophila Proteins , Memory , Mushroom Bodies , Presynaptic Terminals , rab3 GTP-Binding Proteins , Animals , Mushroom Bodies/physiology , Mushroom Bodies/metabolism , Presynaptic Terminals/physiology , Presynaptic Terminals/metabolism , Drosophila Proteins/metabolism , Memory/physiology , rab3 GTP-Binding Proteins/metabolism , rab3 GTP-Binding Proteins/genetics , Nerve Tissue Proteins/metabolism , Drosophila , Synaptic Vesicles/metabolism , Synaptic Vesicles/physiology
11.
Amino Acids ; 56(1): 42, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38869518

ABSTRACT

Creatine is a natural nitrogenous organic acid that is integral to energy metabolism and crucial for proper cell functioning. The kidneys are involved in the first step of creatine production. With kidney transplantation being the gold-standard treatment for end-stage kidney disease, kidney transplant recipients (KTR) may be at risk of impaired creatine synthesis. We aimed to compare creatine homeostasis between KTR and controls. Plasma and urine concentrations of arginine, glycine, guanidinoacetate, creatine and creatinine were measured in 553 KTR and 168 healthy controls. Creatine intake was assessed using food frequency questionnaires. Iothalamate-measured GFR data were available in subsets of 157 KTR and 167 controls. KTR and controls had comparable body weight, height and creatine intake (all P > 0.05). However, the total creatine pool was 14% lower in KTR as compared to controls (651 ± 178 vs. 753 ± 239 mmol, P < 0.001). The endogenous creatine synthesis rate was 22% lower in KTR as compared to controls (7.8 ± 3.0 vs. 10.0 ± 4.1 mmol per day, P < 0.001). Despite lower GFR, the plasma guanidinoacetate and creatine concentrations were 21% and 41% lower in KTR as compared to controls (both P < 0.001). Urinary excretion of guanidinoacetate and creatine were 66% and 59% lower in KTR as compared to controls (both P < 0.001). In KTR, but not in controls, a higher measured GFR was associated with a higher endogenous creatine synthesis rate (std. beta: 0.21, 95% CI: 0.08; 0.33; P = 0.002), as well as a higher total creatine pool (std. beta: 0.22, 95% CI: 0.11; 0.33; P < 0.001). These associations were fully mediated (93% and 95%; P < 0.001) by urinary guanidinoacetate excretion which is consistent with production of the creatine precursor guanidinoacetate as rate-limiting factor. Our findings highlight that KTR have a disturbed creatine homeostasis as compared to controls. Given the direct relationship of measured GFR with endogenous creatine synthesis rate and the total creatine pool, creatine supplementation might be beneficial in KTR with low kidney function.Trial registration ID: NCT02811835.Trial registration URL: https://clinicaltrials.gov/ct2/show/NCT02811835 .


Subject(s)
Creatine , Homeostasis , Kidney Transplantation , Kidney , Humans , Creatine/urine , Creatine/metabolism , Male , Female , Middle Aged , Adult , Kidney/metabolism , Glycine/analogs & derivatives , Glycine/urine , Glycine/metabolism , Glycine/blood , Glomerular Filtration Rate , Transplant Recipients , Case-Control Studies , Creatinine/urine , Creatinine/blood
12.
Cell Rep ; 43(6): 114329, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38850535

ABSTRACT

Many autism spectrum disorder (ASD)-associated genes act as transcriptional regulators (TRs). Chromatin immunoprecipitation sequencing (ChIP-seq) was used to identify the regulatory targets of ARID1B, BCL11A, FOXP1, TBR1, and TCF7L2, ASD-associated TRs in the developing human and mouse cortex. These TRs shared substantial overlap in the binding sites, especially within open chromatin. The overlap within a promoter region, 1-2,000 bp upstream of the transcription start site, was highly predictive of brain-expressed genes. This signature was observed in 96 out of 102 ASD-associated genes. In vitro CRISPRi against ARID1B and TBR1 delineated downstream convergent biology in mouse cortical cultures. After 8 days, NeuN+ and CALB+ cells were decreased, GFAP+ cells were increased, and transcriptomic signatures correlated with the postmortem brain samples from individuals with ASD. We suggest that functional convergence across five ASD-associated TRs leads to shared neurodevelopmental outcomes of haploinsufficient disruption.


Subject(s)
Brain , Humans , Animals , Mice , Brain/metabolism , Autism Spectrum Disorder/genetics , Autism Spectrum Disorder/metabolism , Autism Spectrum Disorder/pathology , Autistic Disorder/genetics , Autistic Disorder/metabolism , Autistic Disorder/pathology , Gene Expression Regulation , Transcription Factors/metabolism , Transcription Factors/genetics , Genetic Loci
13.
J Endocr Soc ; 8(7): bvae098, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38840960

ABSTRACT

Context: Sex-specific prevalence and incidence of type 2 diabetes (T2D) have been reported, but the underlying mechanisms are uncertain. Objective: In this study, we aimed to investigate whether iron biomarkers mediate the association between biological sex and glucose metabolism and the incidence of T2D. Methods: We used data from the general population enrolled in the prospective Prevention of REnal and Vascular ENd-stage Disease study in Groningen, The Netherlands. We measured ferritin, transferrin saturation (TSAT), hepcidin, soluble transferrin receptor (sTfR), fasting plasma glucose (FPG), fasting plasma insulin (FPI) levels, and incidence of T2D. We used multivariable regression and mediation analyses to investigate our hypothesis. All iron biomarkers, FPG, and FPI were log-transformed. Results: The mean (SD) age of the 5312 (51.3% female) individuals was 52.2 (11.6) years. Compared with males, females had lower FPG (ß = -.01; 95% CI -0.02, -0.01) and FPI (ß = -.03; 95% CI -0.05, -0.02) levels. Ferritin, hepcidin, and sTfR showed potential mediating effects on the association between sex and FPG, 21%, 5%, and 7.1%, respectively. Furthermore, these variables mediated 48.6%, 5.7%, and 3.1% of the association between sex and FPI, respectively. Alternatively, TSAT had a suppressive mediating role in the association of sex with FPG and FPI. The incidence of T2D was lower in females than in males (hazard ratio 0.58; 95% CI 0.44, 0.77), with 19.2% of this difference being mediated by ferritin. Conclusion: Iron biomarkers may partially mediate the association between sex and glucose homeostasis. Future studies addressing the causality of our findings are needed.

14.
Article in English | MEDLINE | ID: mdl-38898741

ABSTRACT

BACKGROUND: Serum creatinine is used as initial test to derive eGFR and confirmatory testing with serum cystatin C is recommended when creatinine-based eGFR is considered less accurate due to deviant muscle mass. Low muscle mass is associated with increased risk of premature mortality. However, the associations of serum creatinine and cystatin C with muscle mass and mortality remain unclear and require further investigation to better inform clinical decision-making. METHODS: We included 8437 community-dwelling adults enrolled in the Dutch PREVEND study and 5033 in the US NHANES replication cohort. Associations of serum creatinine and/or cystatin C with muscle mass surrogates and mortality were quantified with linear and Cox proportional hazards regression, respectively. Missing observations in covariates were multiply imputed using Substantive Model Compatible Fully Conditional Specification. RESULTS: Mean (SD) age of PREVEND and NHANES participants (50% and 48% male) were 49.8 (12.6) and 48.7 (18.7) years, respectively. Median (Q1-Q3) serum creatinine and cystatin C were 71 (61-80) and 80 (62-88) µmol/L and 0.87 (0.78-0.98) and 0.91 (0.80-1.10) mg/L, respectively. Higher serum creatinine was associated with greater muscle mass, while serum cystatin C was not associated with muscle mass. Adjusting both markers for each other strengthened the positive relationship between serum creatinine and muscle mass and revealed an inverse association between serum cystatin C and muscle mass. In the PREVEND cohort, 1636 (19%) deaths were registered over a median follow-up of 12.9 (5.8-16.3) years with a 10-year mortality rate (95% CI) of 7.6% (7.1-8.2%). In the NHANES, 1273 (25%) deaths were registered over a median follow-up of 17.9 (17.3-18.5) years with a 10-year mortality rate of 13.8% (12.8-14.7%). Both markers were associated with increased mortality. Notably, when adjusted for each other, higher serum creatinine was associated with decreased mortality, while the association between serum cystatin C and increased mortality strengthened. The shapes of the associations in the PREVEND study and NHANES were almost identical. CONCLUSIONS: The strong association between serum creatinine and muscle mass challenges its reliability as GFR marker, necessitating a more cautious approach in its clinical use. The minimal association between serum cystatin C and muscle mass supports its increased use as a more reliable alternative in routine clinical practice.

15.
Article in English | MEDLINE | ID: mdl-38899469

ABSTRACT

BACKGROUND: Vascular calcification is associated with increased mortality in patients with cardiovascular disease. Secondary calciprotein particles are believed to play a causal role in the pathophysiology of vascular calcification. The maturation time (T50) of calciprotein particles provides a measure of serum calcification propensity. We compared T50 between patients with ST-segment-elevated myocardial infarction and control subjects and studied the association of T50 with cardiovascular risk factors and outcome. METHODS: T50 was measured by nephelometry in 347 patients from the GIPS-III trial and in 254 matched general population controls from PREVEND (Prevention of Renal and Vascular End-Stage Disease). We also assessed the association between T50 and left ventricular ejection fraction, as well as infarct size, the incidence of ischemia-driven reintervention during 5 years of follow-up, and serum nitrite as a marker of endothelial dysfunction. RESULTS: Patients with ST-segment-elevated myocardial infarction had a significantly lower T50 (ie, higher serum calcification propensity) compared with controls (T50: 289±63 versus 338±56 minutes; P<0.001). In patients with ST-segment-elevated myocardial infarction, lower T50 was associated with female sex, lower systolic blood pressure, lower total cholesterol, lower LDL (low-density lipoprotein) cholesterol, lower triglycerides, and higher HDL (high-density lipoprotein) cholesterol but not with circulating nitrite or nitrate. Ischemia-driven reintervention was associated with higher LDL (P=0.03) and had a significant interaction term for T50 and sex (P=0.005), indicating a correlation between ischemia-driven reintervention and T50 above the median in men and below the median in women, between 150 days and 5 years of follow-up. CONCLUSIONS: Serum calcification propensity is increased in patients with ST-segment-elevated myocardial infarction compared with the general population, and its contribution is more pronounced in women than in men. Its lack of/inverse association with nitrite and blood pressure confirms T50 to be orthogonal to traditional cardiovascular disease risk factors. Lower T50 was associated with a more favorable serum lipid profile, suggesting the involvement of divergent pathways of calcification stress and lipid stress in the pathophysiology of myocardial infarction.

16.
Int J Mol Sci ; 25(11)2024 May 30.
Article in English | MEDLINE | ID: mdl-38892218

ABSTRACT

Liver transplant recipients (LTRs) have lower long-term survival rates compared with the general population. This underscores the necessity for developing biomarkers to assess post-transplantation mortality. Here we compared plasma trimethylamine-N-oxide (TMAO) levels with those in the general population, investigated its determinants, and interrogated its association with all-cause mortality in stable LTRs. Plasma TMAO was measured in 367 stable LTRs from the TransplantLines cohort (NCT03272841) and in 4837 participants from the population-based PREVEND cohort. TMAO levels were 35% higher in LTRs compared with PREVEND participants (4.3 vs. 3.2 µmol/L, p < 0.001). Specifically, TMAO was elevated in LTRs with metabolic dysfunction-associated steatotic liver disease, alcohol-associated liver disease, and polycystic liver disease as underlying etiology (p < 0.001 for each). Among LTRs, TMAO levels were independently associated with eGFR (std. ß = -0.43, p < 0.001) and iron supplementation (std. ß = 0.13, p = 0.008), and were associated with mortality (29 deaths during 8.6 years follow-up; log-rank test p = 0.017; hazard ratio of highest vs. lowest tertile 4.14, p = 0.007). In conclusion, plasma TMAO is likely elevated in stable LTRs, with impaired eGFR and iron supplementation as potential contributory factors. Our preliminary findings raise the possibility that plasma TMAO could contribute to increased mortality risk in such patients, but this need to be validated through a series of rigorous and methodical studies.


Subject(s)
Biomarkers , Liver Transplantation , Methylamines , Adult , Aged , Female , Humans , Male , Middle Aged , Biomarkers/blood , Liver Transplantation/adverse effects , Methylamines/blood , Transplant Recipients
17.
Cells ; 13(9)2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38727266

ABSTRACT

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) is a deadly disease with high mortality due to early metastatic dissemination and high chemoresistance. All these factors are favored by its extracellular matrix (ECM)-rich microenvironment, which is also highly hypoxic and acidic. Gemcitabine (GEM) is still the first-line therapy in PDAC. However, it is quickly deaminated to its inactive metabolite. Several GEM prodrugs have emerged to improve its cytotoxicity. Here, we analyzed how the acidic/hypoxic tumor microenvironment (TME) affects the response of PDAC cell death and invadopodia-mediated ECM proteolysis to both GEM and its C18 prodrug. METHODS: For this, two PDAC cell lines, PANC-1 and Mia PaCa-2 were adapted to pHe 6.6 or not for 1 month, grown as 3D organotypic cultures and exposed to either GEM or C18 in the presence and absence of acidosis and the hypoxia inducer, deferoxamine. RESULTS: We found that C18 has higher cytotoxic and anti-invadopodia activity than GEM in all culture conditions and especially in acid and hypoxic environments. CONCLUSIONS: We propose C18 as a more effective approach to conventional GEM in developing new therapeutic strategies overcoming PDAC chemoresistance.


Subject(s)
Deoxycytidine , Gemcitabine , Pancreatic Neoplasms , Tumor Microenvironment , Deoxycytidine/analogs & derivatives , Deoxycytidine/pharmacology , Deoxycytidine/therapeutic use , Humans , Tumor Microenvironment/drug effects , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/metabolism , Cell Line, Tumor , Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/pathology , Carcinoma, Pancreatic Ductal/metabolism , Podosomes/metabolism , Podosomes/drug effects , Drug Resistance, Neoplasm/drug effects , Prodrugs/pharmacology
18.
Prim Care Diabetes ; 2024 May 11.
Article in English | MEDLINE | ID: mdl-38734534

ABSTRACT

BACKGROUND: Smoking is a major risk factor for type 2 diabetes (T2D), but the evidence has mostly relied on self-reports. We aimed to compare the associations of smoking exposure as assessed by self-reports and urine cotinine with T2D. METHODS: Using the PREVEND prospective study, smoking status was assessed at baseline by self-reports and urine cotinine in 4708 participants (mean age, 53 years) without a history of diabetes. Participants were classified as never, former, light current and heavy current smokers according to self-reports and analogous cut-offs for urine cotinine. Hazard ratios (HRs) with 95% CIs were estimated for T2D. RESULTS: During a median follow-up of 7.3 years, 259 participants developed T2D. Compared with self-reported never smokers, the multivariable adjusted HRs (95% CI) of T2D for former, light current, and heavy current smokers were 1.02 (0.75-1.4), 1.41 (0.89-2.22), and 1.30 (0.88-1.93), respectively. The corresponding adjusted HRs (95% CI) were 0.84 (0.43-1.67), 1.61 (1.12-2.31), and 1.58 (1.08-2.32), respectively, as assessed by urine cotinine. Urine cotinine-assessed but not self-reported smoking status improved T2D risk prediction beyond established risk factors. CONCLUSION: Urine cotinine assessed smoking status may be a stronger risk indicator and predictor of T2D compared to self-reported smoking status.

19.
Eur J Nutr ; 2024 May 29.
Article in English | MEDLINE | ID: mdl-38811416

ABSTRACT

PURPOSE: Vitamin C deficiency is associated with excess mortality in kidney transplant recipients (KTR). We aim to evaluate plasma vitamin C status at different post-transplantation moments and assess the main characteristics associated with vitamin C deficiency in KTR. METHODS: Plasma vitamin C was assessed in 598 KTR at 3-, 6-, 12-, 24-, and 60-months post-transplantation, 374 late KTR with a functioning graft ≥ 1 year, and 395 potential donors. Vitamin C deficiency was defined as plasma vitamin C ≤ 28 µmol/L. Diet was assessed by a 177-item food frequency questionnaire. Data on vitamin C-containing supplements use were extracted from patient records and verified with the patients. RESULTS: Vitamin C deficiency ranged from 46% (6-months post-transplantation) to 30% (≥ 1 year post-transplantation). At all time points, KTR had lower plasma vitamin C than potential donors (30-41 µmol/L vs 58 µmol/L). In cross-sectional analyses of the 953 KTR at their first visit ≥ 12 months after transplantation (55 ± 14 years, 62% male, eGFR 55 ± 19 mL/min/1.73 m2), the characteristics with the strongest association with vitamin C deficiency were diabetes and smoking (OR 2.67 [95% CI 1.84-3.87] and OR 1.84 [95% CI 1.16-2.91], respectively). Dietary vitamin C intake and vitamin C supplementation were associated with lower odds (OR per 100 mg/day 0.38, 95% CI 0.24-0.61 and OR 0.21, 95% CI 0.09-0.44, respectively). CONCLUSION: Vitamin C deficiency is frequent among KTR regardless of the time after transplantation, especially among those with diabetes and active smokers. The prevalence of vitamin C deficiency was lower among KTR with higher vitamin C intake, both dietary and supplemented. Further research is warranted to assess whether correcting this modifiable risk factor could improve survival in KTR.

20.
bioRxiv ; 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38712228

ABSTRACT

Genetic studies find hundreds of thousands of noncoding variants associated with psychiatric disorders. Massively parallel reporter assays (MPRAs) and in vivo transgenic mouse assays can be used to assay the impact of these variants. However, the relevance of MPRAs to in vivo function is unknown and transgenic assays suffer from low throughput. Here, we studied the utility of combining the two assays to study the impact of non-coding variants. We carried out an MPRA on over 50,000 sequences derived from enhancers validated in transgenic mouse assays and from multiple fetal neuronal ATAC-seq datasets. We also tested over 20,000 variants, including synthetic mutations in highly active neuronal enhancers and 177 common variants associated with psychiatric disorders. Variants with a high impact on MPRA activity were further tested in mice. We found a strong and specific correlation between MPRA and mouse neuronal enhancer activity including changes in neuronal enhancer activity in mouse embryos for variants with strong MPRA effects. Mouse assays also revealed pleiotropic variant effects that could not be observed in MPRA. Our work provides a large catalog of functional neuronal enhancers and variant effects and highlights the effectiveness of combining MPRAs and mouse transgenic assays.

SELECTION OF CITATIONS
SEARCH DETAIL
...