Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Preprint in English | bioRxiv | ID: ppbiorxiv-304139

ABSTRACT

RNA structural elements occur in numerous single stranded (+)-sense RNA viruses. The stemloop 2 motif (s2m) is one such element with an unusually high degree of sequence conservation, being found in the 3 UTR in the genomes of many astroviruses, some picornaviruses and noroviruses, and a variety of coronaviruses, including SARS-CoV and SARS-CoV-2. The evolutionary conservation and its occurrence in all viral subgenomic transcripts implicates a key role of s2m in the viral infection cycle. Our findings indicate that the element, while stably folded, can nonetheless be invaded and remodelled spontaneously by antisense oligonucleotides (ASOs) that initiate pairing in exposed loops and trigger efficient sequence-specific RNA cleavage in reporter assays. ASOs also act to inhibit replication in an astrovirus replicon model system in a sequence-specific, dose-dependent manner and inhibit SARS-CoV-2 infection in cell culture. Our results thus permit us to suggest that the s2m element is a site of vulnerability readily targeted by ASOs, which show promise as anti-viral agents.

2.
Preprint in English | bioRxiv | ID: ppbiorxiv-179176

ABSTRACT

The SARS-CoV-2 pandemic has created an urgent need for large amounts of diagnostic tests to detect viral RNA, which commercial suppliers are increasingly unable to deliver. In addition to the lack of availability, the current methods do not always fully inactivate the virus. Together, this calls for the development of safer methods for extraction and detection of viral RNA from patient samples that utilise readily available reagents and equipment present in most standard laboratories. We present a rapid and straightforward RNA extraction protocol for inactivating the SARS-CoV-2 virus that uses standard lab reagents. This protocol expands analysis capacity as the inactivated samples can be used in RT-qPCR detection tests at laboratories not otherwise classified for viral work. The method circumvents the need for commercial RNA purification kits, takes about 30 minutes from swab to PCR-ready viral RNA, and enables downstream detection of SARS-CoV-2 by RT-qPCR with very high sensitivity (~4 viral RNA copies per RT-qPCR). In summary, we present a rapid, safe and sensitive method for high-throughput detection of SARS-CoV-2, that can be conducted in any laboratory equipped with a qPCR machine.

SELECTION OF CITATIONS
SEARCH DETAIL
...