Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30.955
Filter
1.
Biomed Phys Eng Express ; 10(5)2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38968931

ABSTRACT

Quantitative contrast-enhanced breast computed tomography (CT) has the potential to improve the diagnosis and management of breast cancer. Traditional CT methods using energy-integrated detectors and dual-exposure images with different incident spectra for material discrimination can increase patient radiation dose and be susceptible to motion artifacts and spectral resolution loss. Photon Counting Detectors (PCDs) offer a promising alternative approach, enabling acquisition of multiple energy levels in a single exposure and potentially better energy resolution. Gallium arsenide (GaAs) is particularly promising for breast PCD-CT due to its high quantum efficiency and reduction of fluorescence x-rays escaping the pixel within the breast imaging energy range. In this study, the spectral performance of a GaAs PCD for quantitative iodine contrast-enhanced breast CT was evaluated. A GaAs detector with a pixel size of 100µm, a thickness of 500µm was simulated. Simulations were performed using cylindrical phantoms of varying diameters (10 cm, 12 cm, and 16 cm) with different concentrations and locations of iodine inserts, using incident spectra of 50, 55, and 60 kVp with 2 mm of added aluminum filtration and and a mean glandular dose of 10 mGy. We accounted for the effects of beam hardening and energy detector response using TIGRE CT open-source software and the publicly available Photon Counting Toolkit (PcTK). Material-specific images of the breast phantom were produced using both projection and image-based material decomposition methods, and iodine component images were used to estimate iodine intake. Accuracy and precision of the proposed methods for estimating iodine concentration in breast CT images were assessed for different material decomposition methods, incident spectra, and breast phantom thicknesses. The results showed that both the beam hardening effect and imperfection in the detector response had a significant impact on performance in terms of Root Mean Squared Error (RMSE), precision, and accuracy of estimating iodine intake in the breast. Furthermore, the study demonstrated the effectiveness of both material decomposition methods in making accurate and precise iodine concentration predictions using a GaAs-based photon counting breast CT system, with better performance when applying the projection-based material decomposition approach. The study highlights the potential of GaAs-based photon counting breast CT systems as viable alternatives to traditional imaging methods in terms of material decomposition and iodine concentration estimation, and proposes phantoms and figures of merit to assess their performance.


Subject(s)
Arsenicals , Breast Neoplasms , Breast , Contrast Media , Gallium , Iodine , Mammography , Phantoms, Imaging , Photons , Tomography, X-Ray Computed , Gallium/chemistry , Humans , Female , Tomography, X-Ray Computed/methods , Contrast Media/chemistry , Mammography/methods , Breast Neoplasms/diagnostic imaging , Breast/diagnostic imaging , Computer Simulation , Monte Carlo Method , Image Processing, Computer-Assisted/methods , Radiation Dosage
2.
Int J Cardiol ; 411: 132329, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38964554

ABSTRACT

BACKGROUND: Left ventricular (LV) thrombus is not common but poses significant risks of embolic stroke or systemic embolism. However, the distinction in embolic risk between nonischemic cardiomyopathy (NICM) and ischemic cardiomyopathy (ICM) remains unclear. METHODS AND RESULTS: In total, 2738 LV thrombus patients from the JROAD-DPC (Japanese Registry of All Cardiac and Vascular Diseases Diagnosis Procedure Combination) database were included. Among these patients, 1037 patients were analyzed, with 826 (79.7%) having ICM and 211 with NICM (20.3%). Within the NICM group, the distribution was as follows: dilated cardiomyopathy (DCM; 41.2%), takotsubo cardiomyopathy (27.0%), hypertrophic cardiomyopathy (18.0%), and other causes (13.8%). The primary outcome was a composite of embolic stroke or systemic embolism (SSE) during hospitalization. The ICM and NICM groups showed no significant difference in the primary outcome (5.8% vs. 7.6%, p = 0.34). Among NICM, SSE occurred in 12.6% of patients with DCM, 7.0% with takotsubo cardiomyopathy, and 2.6% with hypertrophic cardiomyopathy. Multivariate logistic regression analysis for SSE revealed an odds ratio of 1.4 (95% confidence interval [CI], 0.7-2.7, p = 0.37) for NICM compared to ICM. However, DCM exhibited a higher adjusted odds ratio for SSE compared to ICM (2.6, 95% CI 1.2-6.0, p = 0.022). CONCLUSIONS: This nationwide shows comparable rates of embolic events between ICM and NICM in LV thrombus patients, with DCM posing a greater risk of SSE than ICM. The findings emphasize the importance of assessing the specific cause of heart disease in NICM, within LV thrombus management strategies.


Subject(s)
Databases, Factual , Myocardial Ischemia , Registries , Thrombosis , Humans , Female , Male , Aged , Middle Aged , Thrombosis/epidemiology , Myocardial Ischemia/epidemiology , Myocardial Ischemia/diagnosis , Japan/epidemiology , Risk Factors , Embolism/epidemiology , Embolism/complications , Heart Ventricles/diagnostic imaging , Cardiomyopathies/epidemiology , Aged, 80 and over
4.
MAbs ; 16(1): 2373325, 2024.
Article in English | MEDLINE | ID: mdl-38962811

ABSTRACT

T-cell engaging (TCE) bispecific antibodies are potent drugs that trigger the immune system to eliminate cancer cells, but administration can be accompanied by toxic side effects that limit dosing. TCEs function by binding to cell surface receptors on T cells, frequently CD3, with one arm of the bispecific antibody while the other arm binds to cell surface antigens on cancer cells. On-target, off-tumor toxicity can arise when the target antigen is also present on healthy cells. The toxicity of TCEs may be ameliorated through the use of pro-drug forms of the TCE, which are not fully functional until recruited to the tumor microenvironment. This can be accomplished by masking the anti-CD3 arm of the TCE with an autoinhibitory motif that is released by tumor-enriched proteases. Here, we solve the crystal structure of the antigen-binding fragment of a novel anti-CD3 antibody, E10, in complex with its epitope from CD3 and use this information to engineer a masked form of the antibody that can activate by the tumor-enriched protease matrix metalloproteinase 2 (MMP-2). We demonstrate with binding experiments and in vitro T-cell activation and killing assays that our designed prodrug TCE is capable of tumor-selective T-cell activity that is dependent upon MMP-2. Furthermore, we demonstrate that a similar masking strategy can be used to create a pro-drug form of the frequently used anti-CD3 antibody SP34. This study showcases an approach to developing immune-modulating therapeutics that prioritizes safety and has the potential to advance cancer immunotherapy treatment strategies.


Subject(s)
Antibodies, Bispecific , CD3 Complex , Immunotherapy , Prodrugs , T-Lymphocytes , Antibodies, Bispecific/immunology , Antibodies, Bispecific/pharmacology , Humans , CD3 Complex/immunology , Immunotherapy/methods , T-Lymphocytes/immunology , Prodrugs/pharmacology , Prodrugs/chemistry , Neoplasms/immunology , Neoplasms/therapy , Neoplasms/drug therapy , Protein Engineering/methods , Matrix Metalloproteinase 2/immunology
5.
J Med Chem ; 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38994645

ABSTRACT

The study of protein function and dynamics in their native cellular environment is essential for progressing fundamental science. To overcome the requirement of genetic modification of the protein or the limitations of dissociable fluorescent ligands, ligand-directed (LD) chemistry has most recently emerged as a complementary, bioorthogonal approach for labeling native proteins. Here, we describe the rational design, development, and application of the first ligand-directed chemistry approach for labeling the A1AR in living cells. We pharmacologically demonstrate covalent labeling of A1AR expressed in living cells while the orthosteric binding site remains available. The probes were imaged using confocal microscopy and fluorescence correlation spectroscopy to study A1AR localization and dynamics in living cells. Additionally, the probes allowed visualization of the specific localization of A1ARs endogenously expressed in dorsal root ganglion (DRG) neurons. LD probes developed here hold promise for illuminating ligand-binding, receptor signaling, and trafficking of the A1AR in more physiologically relevant environments.

6.
ACS Med Chem Lett ; 15(7): 1127-1135, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-39015271

ABSTRACT

The P2Y2 receptor (P2Y2R) is a target for diseases including cancer, idiopathic pulmonary fibrosis, and atherosclerosis. However, there are insufficient P2Y2R antagonists available for validating P2Y2R function and future drug development. Evaluation of how (R)-5-(7-chloro-2-((2-ethoxyethyl)amino)-4H-benzo[5,6]cyclohepta[1,2-d]thiazol-4-yl)-1-methyl-4-thioxo-3,4-dihydropyrimidin-2(1H)-one, a previously published thiazole-based analogue of AR-C118925, binds in a P2Y2R homology model was used to design new P2Y2R antagonist scaffolds. One P2Y2R antagonist scaffold retained millimolar affinity for the P2Y2R and upon further functionalization with terminal carboxylic acid groups affinity was improved over 100-fold. This functionalized P2Y2R antagonist scaffold was employed to develop new chemotype P2Y2R fluorescent ligands, that were attainable in a convergent five-step synthesis. One of these fluorescent ligands demonstrated micromolar affinity (pK d = 6.02 ± 0.12, n = 5) for the P2Y2R in isolated cell membranes and distinct pharmacology from an existing P2Y2R fluorescent antagonist, suggesting it may occupy a different binding site on the P2Y2R.

7.
Water Res ; 262: 122077, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-39018582

ABSTRACT

Wastewater treatment technologies opened the door for recovery of extracellular polymeric substances (EPS), presenting novel opportunities for use across diverse industrial sectors. Earlier studies showed that a significant amount of phosphorus (P) is recovered within extracted EPS. P recovered within the extracted EPS is an intrinsic part of the recovered material that potentially influences its properties. Understanding the P speciation in extracted EPS lays the foundation for leveraging the incorporated P in EPS to manipulate its properties and industrial applications. This study evaluated P speciation in EPS extracted from aerobic granular sludge (AGS). A fractionation lab protocol was established to consistently distinguish P species in extracted EPS liquid phase and polymer chains. 31P nuclear magnetic resonance (NMR) spectroscopy was used as a complementary technique to provide additional information on P speciation and track changes in P species during the EPS extraction process. Findings showed the dominance of organic phosphorus and orthophosphates within EPS, besides other minor fractions. On average, 25% orthophosphates in the polymer liquid phase, 52% organic phosphorus (equal ratio of mono and diesters) covalently bound to the polymer chains, 16% non-apatite inorganic phosphorus (NAIP) precipitates mainly FeP and AlP, and 7% pyrophosphates (6% in the liquid phase and 1% attached to the polymer chains) were identified. Polyphosphates were detected in initial AGS but hydrolyzed to orthophosphates, pyrophosphates, and possibly organic P (forming new esters) during the EPS extraction process. The knowledge created in this study is a step towards the goal of EPS engineering, manipulating P chemistry along the extraction process and enriching certain P species in EPS based on target properties and industrial applications.

8.
Stress ; 27(1): 2377272, 2024 Jan.
Article in English | MEDLINE | ID: mdl-39020286

ABSTRACT

Aberrant functioning of the hypothalamic-pituitary-adrenal (HPA) axis is a hallmark of conditions such as depression, anxiety disorders, and post-traumatic stress disorder. Early-life adversity and genetic variation can interaction to disrupt HPA axis regulation, potentially contributing to certain forms of psychopathology. This study employs a rhesus macaque model to investigate how early parental neglect interacts with a single nucleotide polymorphism within the promoter region of the corticotropin-releasing hormone (CRH-248) gene, impacting the development of the HPA axis. For the initial six months of life, 307 rhesus monkey infants (n = 146 females, n = 161 males) were either reared with their mothers (MR) in conditions emulating the natural environment (control group) or raised without maternal care in groups with constant or 3-hours daily access to same-aged peers (NR). Blood samples collected on days 30, 60, 90, and 120 of life under stressful conditions were assayed for plasma cortisol and adrenocorticotropic hormone (ACTH) concentrations. Findings revealed that NR subjects exhibited a significant blunting of both ACTH and cortisol concentrations. Notably, there was a gene-by-environment interaction observed for ACTH and cortisol levels, with NR subjects with the polymorphism displaying higher ACTH concentrations and lower cortisol concentrations. To the extent that these results generalize to humans, they suggest that early parental neglect may render individuals vulnerable to HPA axis dysfunction, a susceptibility that is modulated by CRH-248 genotype-a gene-by-environment interaction that leaves a lasting developmental signature.


Subject(s)
Corticotropin-Releasing Hormone , Hydrocortisone , Hypothalamo-Hypophyseal System , Macaca mulatta , Pituitary-Adrenal System , Polymorphism, Single Nucleotide , Promoter Regions, Genetic , Animals , Hypothalamo-Hypophyseal System/metabolism , Female , Corticotropin-Releasing Hormone/genetics , Male , Hydrocortisone/blood , Genotype , Stress, Psychological/genetics , Gene-Environment Interaction , Maternal Deprivation , Adrenocorticotropic Hormone/blood
9.
J Am Chem Soc ; 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39021150

ABSTRACT

The pursuit of robust, long-range magnetic ordering in two-dimensional (2D) materials holds immense promise for driving technological advances. However, achieving this goal remains a grand challenge due to enhanced quantum and thermal fluctuations as well as chemical instability in the 2D limit. While magnetic ordering has been realized in atomically thin flakes of transition metal chalcogenides and metal halides, these materials often suffer from air instability. In contrast, 2D carbon-based materials are stable enough, yet the challenge lies in creating a high density of local magnetic moments and controlling their long-range magnetic ordering. Here, we report a novel wafer-scale synthesis of an air-stable metallo-carbon nitride monolayer (MCN, denoted as MN4/CNx), featuring ultradense single magnetic atoms and exhibiting robust room-temperature ferromagnetism. Under low-pressure chemical vapor deposition conditions, thermal dehydrogenation and polymerization of metal phthalocyanine (MPc) on copper foil at elevated temperature generate a substantial number of nitrogen coordination sites for anchoring magnetic single atoms in monolayer MN4/CNx (where M = Fe, Co, and Ni). The incorporation of densely populating MN4 sites into monolayer MCN networks leads to robust ferromagnetism up to room temperature, enabling the observation of anomalous Hall effects with excellent chemical stability. Detailed electronic structure calculations indicate that the presence of high-density metal sites results in the emergence of spin-split d-bands near the Fermi level, causing a favorable long-range ferromagnetic exchange coupling through direct exchange interactions. Our work demonstrates a novel synthesis approach for wafer-scale MCN monolayers with robust room-temperature ferromagnetism and may shed light on practical electronic and spintronic applications.

10.
Cardiol Rev ; 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38980077

ABSTRACT

Artificial sweeteners are increasingly popular as alternatives to sugar. Approximately 41% of the American adult population reports regular consumption of low-calorie sweeteners. People are not even aware they are ingesting artificial sweeteners as they are now in chewing gum, toothpaste, various food products, baked goods, and even pharmaceutical products. Some of these sweeteners are sweeter than sugar, some less sweet than sugar, and some are natural sweeteners. With the goal of increasing palatability, many products have multiple additives to create the perfect taste. Despite their widespread use and perceived benefits, there is increasing concern in the academic community about the long-term safety of these artificial sweeteners and their role in increasing the burden of cardiovascular diseases, including coronary heart disease, stroke, and heart failure. There is general agreement about the cardiovascular risk of added sugars to a diet. Public health authorities have recommended limiting added sugar consumption. Replacing sugar with these artificial sweeteners has become increasingly popular, but safety remains a question. While multiple well-designed randomized clinical trials are needed for the conclusion, review of the current literature gives us pause about the cardiovascular risk and long-term safety of these additives.

11.
Article in English | MEDLINE | ID: mdl-39009417

ABSTRACT

Facioscapulohumeral dystrophy (FSHD) is caused by misexpression of the early embryonic transcription factor Double Homeobox Protein 4 (DUX4) in skeletal muscle. DUX4 is normally expressed at the 4-cell stage of the human embryo and initiates a portion of the first wave of embryonic gene expression that establishes the totipotent cells of the embryo. Following brief expression, the DUX4 locus is suppressed by epigenetic silencing and remains silenced in nearly all somatic cells. Mutations that cause FSHD decrease the efficiency of epigenetic silencing of the DUX4 locus and result in aberrant expression of this transcription factor in skeletal muscles. DUX4 expression in these skeletal muscles reactivates part of the early totipotent program and suppresses the muscle program-resulting in a progressive muscular dystrophy that affects some muscles earlier than others. These advances in understanding the cause of FSHD have led to multiple therapeutic strategies that are now entering clinical trials.

12.
Cancers (Basel) ; 16(13)2024 Jun 26.
Article in English | MEDLINE | ID: mdl-39001403

ABSTRACT

B cells are central to the adaptive immune response and provide long-lasting immunity after infection. B cell activation is mediated by the surface membrane-bound B cell receptor (BCR) following recognition of a specific antigen. The BCR has been challenging to analyse using mass spectrometry (MS) due to the difficulty of isolating and enriching this membrane-bound protein complex. There are approximately 120,000 BCRs on the B cell surface; however, depending on the B cell activation state, there may be hundreds-of-millions to billions of proteins in a B cell. Consequently, advanced proteomic techniques such as MS workflows that use purified proteins to yield structural and protein-interaction information have not been published for the BCR complex. This paper describes a method for enriching the BCR complex that is MS-compatible. The method involves a Protein G pull down on agarose beads using an intermediary antibody to each of the BCR complex subcomponents (CD79a, CD79b, and membrane immunoglobulin). The enrichment process is shown to pull down the entire BCR complex and has the advantage of being readily compatible with further proteomic study including MS analysis. Using intermediary antibodies has the potential to enrich all isotypes of the BCR, unlike previous methods described in the literature that use protein G-coated beads to directly pull down the membrane IgG (mIgG) but cannot be used for other mIg isotypes.

13.
Mar Pollut Bull ; 206: 116704, 2024 Jul 13.
Article in English | MEDLINE | ID: mdl-39004060

ABSTRACT

Extreme rainfall from an ex-tropical cyclone caused a major flood event in the Logan River system in southeast Queensland, Australia. This resulted in a significant flood plume, containing nutrients and sediment, being discharged into the adjacent estuary/Bay system. The spatial extent of higher phytoplankton biomass (Chl a) matched the distribution of higher nutrient and sediment concentrations post-flood, suggesting nutrients fuelled phytoplankton production. Particulate nitrogen (PN) constituted over 50 % of total nitrogen in floodwaters, with lower proportions of dissolved inorganic nitrogen (DIN) and phosphate (PO4-P). Phytoplankton utilised DIN rapidly but may have maintained growth due to the release of ammonia from suspended sediments and microbial mineralisation of particulate organic nitrogen. Ammonia release from intertidal sediments contributed minimally (0.85 %) to daily phytoplankton nitrogen demands. Our study highlights the need to understand the fate of particulate nitrogen in coastal systems and its role in stimulating phytoplankton growth.

14.
Aust Health Rev ; 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39004807

ABSTRACT

What is known about this topic? We discuss a recently published paper that alleges clinicians are causal agents of non-compliant billing of Medicare. What does this paper add? The paper's arguments are partially supported by unreferenced assertions, potential logical fallacies, inaccurate reporting of referenced material and unsubstantiated rhetoric. What are the implications for practitioners? Due to the lack of substantive evidence, it cannot be concluded that clinicians are the causal agents of non-compliant billing of Medicare.

15.
J Chem Phys ; 161(3)2024 Jul 21.
Article in English | MEDLINE | ID: mdl-39007377

ABSTRACT

Infrared (IR) action spectroscopy is utilized to characterize carbon-centered hydroperoxy-cyclohexyl radicals (·QOOH) transiently formed in cyclohexane oxidation. The oxidation pathway leads to three nearly degenerate ·QOOH isomers, ß-, γ-, and δ-QOOH, which are generated in the laboratory by H-atom abstraction from the corresponding ring sites of the cyclohexyl hydroperoxide (CHHP) precursor. The IR spectral features of jet-cooled and stabilized ·QOOH radicals are observed from 3590 to 7010 cm-1 (∼10-20 kcal mol-1) at energies in the vicinity of the transition state (TS) barrier leading to OH radicals that are detected by ultraviolet laser-induced fluorescence. The experimental approach affords selective detection of ß-QOOH, arising from its significantly lower TS barrier to OH products compared to γ and δ isomers, which results in rapid unimolecular decay and near unity branching to OH products. The observed IR spectrum of ß-QOOH includes fundamental and overtone OH stretch transitions, overtone CH stretch transitions, and combination bands involving OH or CH stretch with lower frequency modes. The assignment of ß-QOOH spectral features is guided by anharmonic frequencies and intensities computed using second-order vibrational perturbation theory. The overtone OH stretch (2νOH) of ß-QOOH is shifted only a few wavenumbers from that observed for the CHHP precursor, yet they are readily distinguished by their prompt vs slow dissociation rates to OH products.

16.
Ophthalmology ; 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-39001766

ABSTRACT

PURPOSE: To review the efficacy and safety of oral vismodegib (Erivedge; Genentech) in the management of locally advanced orbital and periorbital basal cell carcinoma (BCC). METHODS: A literature search was conducted last in September 2023 in the PubMed database for English language original research that evaluated the effect of oral vismodegib on orbital and periorbital BCC. Sixty articles were identified and 16 met the inclusion criteria. RESULTS: Most studies demonstrated high response rates, with up to 100% of patients responding to the medication in individual studies and initial complete regression occurring in up to 88% of patients. Vismodegib treatment resulted in significant reductions in tumor volume, resulting in globe preservation for most patients. However, in 12% of patients, the response was partial. Recurrences also occurred with substantial frequency, even after an initial complete response. As such, up to 79.4% of patients required surgical intervention, and up to 23% of patients still required exenteration. Use of these agents resulted in reductions in tumor volume that may delay or prevent the need for exenteration in some, but not all, patients. Importantly, molecular analysis of tissue excised after vismodegib therapy revealed persistent tumor in all patients, with frequent accumulation of mutations that may confer resistance to further hedgehog inhibitor therapy. Although most adverse events were rated as level I or II, side effects were common, with up to 100% of patients in studies experiencing at least 1 event. Muscle cramps, alopecia, weight loss, fatigue, and dysgeusia were the most common adverse events, and several patients discontinued therapy because of them. Furthermore, 1 patient died of sepsis that may have resulted from the therapy. CONCLUSIONS: Although level I and II evidence are lacking, most studies indicate a benefit from the use of oral vismodegib to treat orbital and periorbital BCC tumor volume. However, patients should be cautioned about the adverse side effects of treatment and the persistence of tumor cells with mutations that may cause long-term resistance. Use of vismodegib as short-term neoadjuvant therapy may be effective in shrinking tumor volume to reduce surgical morbidity while reducing the frequency and severity of side effects. FINANCIAL DISCLOSURE(S): The author(s) have no proprietary or commercial interest in any materials discussed in this article.

17.
Cells ; 13(13)2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38994929

ABSTRACT

Standard-of-care treatment for Glioblastoma Multiforme (GBM) is comprised of surgery and adjuvant chemoradiation. Chimeric Antigen Receptor (CAR) T cell therapy has demonstrated disease-modifying activity in GBM and holds great promise. Radiation, a standard-of-care treatment for GBM, has well-known immunomodulatory properties and may overcome the immunosuppressive tumor microenvironment (TME); however, radiation dose optimization and integration with CAR T cell therapy is not well defined. Murine immunocompetent models of GBM were treated with titrated doses of stereotactic radiosurgery (SRS) of 5, 10, and 20 Gray (Gy), and the TME was analyzed using Nanostring. A conditioning dose of 10 Gy was determined based on tumor growth kinetics and gene expression changes in the TME. We demonstrate that a conditioning dose of 10 Gy activates innate and adaptive immune cells in the TME. Mice treated with 10 Gy in combination with mCAR T cells demonstrated enhanced antitumor activity and superior memory responses to rechallenge with IL13Rα2-positive tumors. Furthermore, 10 Gy plus mCAR T cells also protected against IL13Rα2-negative tumors through a mechanism that was, in part, c-GAS-STING pathway-dependent. Together, these findings support combination conditioning with low-dose 10 Gy radiation in combination with mCAR T cells as a therapeutic strategy for GBM.


Subject(s)
Glioblastoma , Receptors, Chimeric Antigen , Tumor Microenvironment , Glioblastoma/therapy , Glioblastoma/immunology , Glioblastoma/radiotherapy , Glioblastoma/pathology , Animals , Receptors, Chimeric Antigen/metabolism , Receptors, Chimeric Antigen/immunology , Mice , Tumor Microenvironment/immunology , Humans , Cell Line, Tumor , Immunotherapy, Adoptive/methods , Brain Neoplasms/therapy , Brain Neoplasms/immunology , Brain Neoplasms/pathology , Brain Neoplasms/radiotherapy , T-Lymphocytes/immunology , Mice, Inbred C57BL , Immunomodulation , Female
18.
J Cell Biol ; 223(9)2024 Sep 02.
Article in English | MEDLINE | ID: mdl-38990714

ABSTRACT

Dermal fibroblasts deposit type I collagen, the dominant extracellular matrix molecule found in skin, during early postnatal development. Coincident with this biosynthetic program, fibroblasts proteolytically remodel pericellular collagen fibrils by mobilizing the membrane-anchored matrix metalloproteinase, Mmp14. Unexpectedly, dermal fibroblasts in Mmp14-/- mice commit to a large-scale apoptotic program that leaves skin tissues replete with dying cells. A requirement for Mmp14 in dermal fibroblast survival is recapitulated in vitro when cells are embedded within, but not cultured atop, three-dimensional hydrogels of crosslinked type I collagen. In the absence of Mmp14-dependent pericellular proteolysis, dermal fibroblasts fail to trigger ß1 integrin activation and instead actuate a TGF-ß1/phospho-JNK stress response that leads to apoptotic cell death in vitro as well as in vivo. Taken together, these studies identify Mmp14 as a requisite cell survival factor that maintains dermal fibroblast viability in postnatal dermal tissues.


Subject(s)
Apoptosis , Cell Survival , Fibroblasts , Matrix Metalloproteinase 14 , Animals , Matrix Metalloproteinase 14/metabolism , Matrix Metalloproteinase 14/genetics , Fibroblasts/metabolism , Mice , Mice, Knockout , Collagen Type I/metabolism , Collagen Type I/genetics , Integrin beta1/metabolism , Integrin beta1/genetics , Transforming Growth Factor beta1/metabolism , Dermis/metabolism , Dermis/cytology , Cells, Cultured , Extracellular Matrix/metabolism , Mice, Inbred C57BL , Skin/metabolism
19.
Chem Sci ; 15(26): 10018-10026, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38966380

ABSTRACT

Organic superbases are a distinct class of strong base that enable numerous modern reaction applications. Despite their great synthetic potential, widespread use and study of superbases are limited by their air sensitivity and difficult preparation. To address this, we report air-stable carboxylate salts of BTPP and P2-t-Bu phosphazene superbases that, when added to solution with an epoxide, spontaneously generate freebase. These systems function as effective precatalysts and stoichiometric prereagents for superbase-promoted addition, substitution and polymerization reactions. In addition to improving the synthesis, shelf stability, handling and recycling of phosphazenes, this approach enables precise regulation of the rate of base generation in situ. The activation strategy effectively mimics manual slow addition techniques, allowing for control over a reaction's rate or induction period and improvement of reactions that require strong base but are also sensitive to its presence, such as Pd-catalyzed coupling reactions.

20.
Front Immunol ; 15: 1352789, 2024.
Article in English | MEDLINE | ID: mdl-38966639

ABSTRACT

Introduction: Extracellular ATP (eATP) released from damaged cells activates the P2X7 receptor (P2X7R) ion channel on the surface of surrounding cells, resulting in calcium influx, potassium efflux and inflammasome activation. Inherited changes in the P2X7R gene (P2RX7) influence eATP induced responses. Single nucleotide polymorphisms (SNPs) of P2RX7 influence both function and signaling of the receptor, that in addition to ion flux includes pathogen control and immunity. Methods: Subjects (n = 105) were admitted to the ICU at the University Hospital Ulm, Germany between June 2018 and August 2019. Of these, subjects with a diagnosis of sepsis (n = 75), were also diagnosed with septic shock (n = 24), and/or pneumonia (n = 42). Subjects with pneumonia (n = 43) included those without sepsis (n = 1), sepsis without shock (n = 29) and pneumonia with septic shock (n = 13). Out of the 75 sepsis/septic shock patients, 33 patients were not diagnosed with pneumonia. Controls (n = 30) were recruited to the study from trauma patients and surgical patients without sepsis, septic shock, or pneumonia. SNP frequencies were determined for 16 P2RX7 SNPs known to affect P2X7R function, and association studies were performed between frequencies of these SNPs in sepsis, septic shock, and pneumonia compared to controls. Results: The loss-of-function (LOF) SNP rs17525809 (T253C) was found more frequently in patients with septic shock, and non-septic trauma patients when compared to sepsis. The LOF SNP rs2230911 (C1096G) was found to be more frequent in patients with sepsis and septic shock than in non-septic trauma patients. The frequencies of these SNPs were even higher in sepsis and septic patients with pneumonia. The current study also confirmed a previous study by our group that showed a five SNP combination that included the GOF SNPs rs208294 (C489T) and rs2230912 (Q460R) that was designated #21211 was associated with increased odds of survival in severe sepsis. Discussion: The results found an association between expression of LOF P2RX7 SNPs and presentation to the ICU with sepsis, and septic shock compared to control ICU patients. Furthermore, frequencies of LOF SNPs were found to be higher in sepsis patients with pneumonia compared to those without pneumonia. In addition, a five SNP GOF combination was associated with increased odds of survival in severe sepsis. These results suggest that P2RX7 is required to control infection in pneumonia and that inheritance of LOF variants increases the risk of sepsis when associated with pneumonia. This study confirms that P2RX7 genotyping in pneumonia may identify patients at risk of developing sepsis. The study also identifies P2X7R as a target in sepsis associated with an excessive immune response in subjects with GOF SNP combinations.


Subject(s)
Pneumonia , Polymorphism, Single Nucleotide , Receptors, Purinergic P2X7 , Sepsis , Shock, Septic , Humans , Receptors, Purinergic P2X7/genetics , Male , Female , Shock, Septic/genetics , Shock, Septic/mortality , Shock, Septic/immunology , Middle Aged , Pneumonia/genetics , Pneumonia/mortality , Aged , Sepsis/genetics , Sepsis/mortality , Genetic Predisposition to Disease , Adenosine Triphosphate/metabolism , Adult , Aged, 80 and over
SELECTION OF CITATIONS
SEARCH DETAIL
...